vaibhavad commited on
Commit
961e2f4
·
verified ·
1 Parent(s): 18e77db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2495 -0
README.md CHANGED
@@ -23,6 +23,2501 @@ tags:
23
  - fever
24
  - hotpot_qa
25
  - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
 
23
  - fever
24
  - hotpot_qa
25
  - mteb
26
+ model-index:
27
+ - name: LLM2Vec-Sheared-LLaMA-unsupervised
28
+ results:
29
+ - task:
30
+ type: Classification
31
+ dataset:
32
+ type: mteb/amazon_counterfactual
33
+ name: MTEB AmazonCounterfactualClassification (en)
34
+ config: en
35
+ split: test
36
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
37
+ metrics:
38
+ - type: accuracy
39
+ value: 72.92537313432835
40
+ - type: ap
41
+ value: 36.6875749512053
42
+ - type: f1
43
+ value: 67.36274146169845
44
+ - task:
45
+ type: Classification
46
+ dataset:
47
+ type: mteb/amazon_polarity
48
+ name: MTEB AmazonPolarityClassification
49
+ config: default
50
+ split: test
51
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
52
+ metrics:
53
+ - type: accuracy
54
+ value: 74.282675
55
+ - type: ap
56
+ value: 69.15441866642587
57
+ - type: f1
58
+ value: 74.13028166370813
59
+ - task:
60
+ type: Classification
61
+ dataset:
62
+ type: mteb/amazon_reviews_multi
63
+ name: MTEB AmazonReviewsClassification (en)
64
+ config: en
65
+ split: test
66
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
67
+ metrics:
68
+ - type: accuracy
69
+ value: 36.136
70
+ - type: f1
71
+ value: 35.840498320506235
72
+ - task:
73
+ type: Retrieval
74
+ dataset:
75
+ type: arguana
76
+ name: MTEB ArguAna
77
+ config: default
78
+ split: test
79
+ revision: None
80
+ metrics:
81
+ - type: map_at_1
82
+ value: 21.407999999999998
83
+ - type: map_at_10
84
+ value: 35.474
85
+ - type: map_at_100
86
+ value: 36.653999999999996
87
+ - type: map_at_1000
88
+ value: 36.68
89
+ - type: map_at_3
90
+ value: 30.974
91
+ - type: map_at_5
92
+ value: 33.265
93
+ - type: mrr_at_1
94
+ value: 22.119
95
+ - type: mrr_at_10
96
+ value: 35.714
97
+ - type: mrr_at_100
98
+ value: 36.895
99
+ - type: mrr_at_1000
100
+ value: 36.921
101
+ - type: mrr_at_3
102
+ value: 31.2
103
+ - type: mrr_at_5
104
+ value: 33.518
105
+ - type: ndcg_at_1
106
+ value: 21.407999999999998
107
+ - type: ndcg_at_10
108
+ value: 43.644
109
+ - type: ndcg_at_100
110
+ value: 49.035000000000004
111
+ - type: ndcg_at_1000
112
+ value: 49.685
113
+ - type: ndcg_at_3
114
+ value: 34.174
115
+ - type: ndcg_at_5
116
+ value: 38.288
117
+ - type: precision_at_1
118
+ value: 21.407999999999998
119
+ - type: precision_at_10
120
+ value: 6.999
121
+ - type: precision_at_100
122
+ value: 0.9440000000000001
123
+ - type: precision_at_1000
124
+ value: 0.099
125
+ - type: precision_at_3
126
+ value: 14.485999999999999
127
+ - type: precision_at_5
128
+ value: 10.683
129
+ - type: recall_at_1
130
+ value: 21.407999999999998
131
+ - type: recall_at_10
132
+ value: 69.986
133
+ - type: recall_at_100
134
+ value: 94.381
135
+ - type: recall_at_1000
136
+ value: 99.431
137
+ - type: recall_at_3
138
+ value: 43.457
139
+ - type: recall_at_5
140
+ value: 53.413999999999994
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ type: mteb/arxiv-clustering-p2p
145
+ name: MTEB ArxivClusteringP2P
146
+ config: default
147
+ split: test
148
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
149
+ metrics:
150
+ - type: v_measure
151
+ value: 42.915010245699904
152
+ - task:
153
+ type: Clustering
154
+ dataset:
155
+ type: mteb/arxiv-clustering-s2s
156
+ name: MTEB ArxivClusteringS2S
157
+ config: default
158
+ split: test
159
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
160
+ metrics:
161
+ - type: v_measure
162
+ value: 35.19568272188972
163
+ - task:
164
+ type: Reranking
165
+ dataset:
166
+ type: mteb/askubuntudupquestions-reranking
167
+ name: MTEB AskUbuntuDupQuestions
168
+ config: default
169
+ split: test
170
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
171
+ metrics:
172
+ - type: map
173
+ value: 52.696972763822615
174
+ - type: mrr
175
+ value: 65.87136701402629
176
+ - task:
177
+ type: STS
178
+ dataset:
179
+ type: mteb/biosses-sts
180
+ name: MTEB BIOSSES
181
+ config: default
182
+ split: test
183
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
184
+ metrics:
185
+ - type: cos_sim_spearman
186
+ value: 75.12038636775851
187
+ - task:
188
+ type: Classification
189
+ dataset:
190
+ type: mteb/banking77
191
+ name: MTEB Banking77Classification
192
+ config: default
193
+ split: test
194
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
+ metrics:
196
+ - type: accuracy
197
+ value: 78.99675324675324
198
+ - type: f1
199
+ value: 78.90527329824852
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-p2p
204
+ name: MTEB BiorxivClusteringP2P
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 35.02170435970243
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ type: mteb/biorxiv-clustering-s2s
215
+ name: MTEB BiorxivClusteringS2S
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 27.208216971540782
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ type: cqadupstack/android
226
+ name: MTEB CQADupstackAndroidRetrieval
227
+ config: default
228
+ split: test
229
+ revision: None
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 16.432
233
+ - type: map_at_10
234
+ value: 23.769000000000002
235
+ - type: map_at_100
236
+ value: 25.038
237
+ - type: map_at_1000
238
+ value: 25.208000000000002
239
+ - type: map_at_3
240
+ value: 21.532999999999998
241
+ - type: map_at_5
242
+ value: 22.668
243
+ - type: mrr_at_1
244
+ value: 21.316
245
+ - type: mrr_at_10
246
+ value: 28.89
247
+ - type: mrr_at_100
248
+ value: 29.799999999999997
249
+ - type: mrr_at_1000
250
+ value: 29.887999999999998
251
+ - type: mrr_at_3
252
+ value: 26.705000000000002
253
+ - type: mrr_at_5
254
+ value: 27.864
255
+ - type: ndcg_at_1
256
+ value: 21.316
257
+ - type: ndcg_at_10
258
+ value: 28.656
259
+ - type: ndcg_at_100
260
+ value: 34.405
261
+ - type: ndcg_at_1000
262
+ value: 37.771
263
+ - type: ndcg_at_3
264
+ value: 24.98
265
+ - type: ndcg_at_5
266
+ value: 26.384999999999998
267
+ - type: precision_at_1
268
+ value: 21.316
269
+ - type: precision_at_10
270
+ value: 5.8229999999999995
271
+ - type: precision_at_100
272
+ value: 1.157
273
+ - type: precision_at_1000
274
+ value: 0.181
275
+ - type: precision_at_3
276
+ value: 12.446
277
+ - type: precision_at_5
278
+ value: 8.984
279
+ - type: recall_at_1
280
+ value: 16.432
281
+ - type: recall_at_10
282
+ value: 37.696000000000005
283
+ - type: recall_at_100
284
+ value: 63.198
285
+ - type: recall_at_1000
286
+ value: 86.651
287
+ - type: recall_at_3
288
+ value: 26.651000000000003
289
+ - type: recall_at_5
290
+ value: 30.901
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ type: cqadupstack/english
295
+ name: MTEB CQADupstackEnglishRetrieval
296
+ config: default
297
+ split: test
298
+ revision: None
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 16.106
302
+ - type: map_at_10
303
+ value: 21.770999999999997
304
+ - type: map_at_100
305
+ value: 22.538
306
+ - type: map_at_1000
307
+ value: 22.656000000000002
308
+ - type: map_at_3
309
+ value: 19.918
310
+ - type: map_at_5
311
+ value: 20.957
312
+ - type: mrr_at_1
313
+ value: 21.083
314
+ - type: mrr_at_10
315
+ value: 26.502
316
+ - type: mrr_at_100
317
+ value: 27.161
318
+ - type: mrr_at_1000
319
+ value: 27.234
320
+ - type: mrr_at_3
321
+ value: 24.735
322
+ - type: mrr_at_5
323
+ value: 25.753999999999998
324
+ - type: ndcg_at_1
325
+ value: 21.083
326
+ - type: ndcg_at_10
327
+ value: 25.625999999999998
328
+ - type: ndcg_at_100
329
+ value: 29.152
330
+ - type: ndcg_at_1000
331
+ value: 32.025
332
+ - type: ndcg_at_3
333
+ value: 22.721
334
+ - type: ndcg_at_5
335
+ value: 24.029
336
+ - type: precision_at_1
337
+ value: 21.083
338
+ - type: precision_at_10
339
+ value: 4.8919999999999995
340
+ - type: precision_at_100
341
+ value: 0.844
342
+ - type: precision_at_1000
343
+ value: 0.13699999999999998
344
+ - type: precision_at_3
345
+ value: 11.104
346
+ - type: precision_at_5
347
+ value: 7.987
348
+ - type: recall_at_1
349
+ value: 16.106
350
+ - type: recall_at_10
351
+ value: 32.385999999999996
352
+ - type: recall_at_100
353
+ value: 47.961999999999996
354
+ - type: recall_at_1000
355
+ value: 67.63900000000001
356
+ - type: recall_at_3
357
+ value: 23.568
358
+ - type: recall_at_5
359
+ value: 27.326
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ type: cqadupstack/gaming
364
+ name: MTEB CQADupstackGamingRetrieval
365
+ config: default
366
+ split: test
367
+ revision: None
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 22.517
371
+ - type: map_at_10
372
+ value: 29.593999999999998
373
+ - type: map_at_100
374
+ value: 30.695
375
+ - type: map_at_1000
376
+ value: 30.803000000000004
377
+ - type: map_at_3
378
+ value: 27.592
379
+ - type: map_at_5
380
+ value: 28.768
381
+ - type: mrr_at_1
382
+ value: 26.27
383
+ - type: mrr_at_10
384
+ value: 33.076
385
+ - type: mrr_at_100
386
+ value: 33.998
387
+ - type: mrr_at_1000
388
+ value: 34.073
389
+ - type: mrr_at_3
390
+ value: 31.223
391
+ - type: mrr_at_5
392
+ value: 32.257000000000005
393
+ - type: ndcg_at_1
394
+ value: 26.27
395
+ - type: ndcg_at_10
396
+ value: 33.726
397
+ - type: ndcg_at_100
398
+ value: 39.079
399
+ - type: ndcg_at_1000
400
+ value: 41.762
401
+ - type: ndcg_at_3
402
+ value: 30.064
403
+ - type: ndcg_at_5
404
+ value: 31.858999999999998
405
+ - type: precision_at_1
406
+ value: 26.27
407
+ - type: precision_at_10
408
+ value: 5.448
409
+ - type: precision_at_100
410
+ value: 0.898
411
+ - type: precision_at_1000
412
+ value: 0.121
413
+ - type: precision_at_3
414
+ value: 13.417000000000002
415
+ - type: precision_at_5
416
+ value: 9.317
417
+ - type: recall_at_1
418
+ value: 22.517
419
+ - type: recall_at_10
420
+ value: 42.814
421
+ - type: recall_at_100
422
+ value: 67.037
423
+ - type: recall_at_1000
424
+ value: 86.89099999999999
425
+ - type: recall_at_3
426
+ value: 33.041
427
+ - type: recall_at_5
428
+ value: 37.389
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ type: cqadupstack/gis
433
+ name: MTEB CQADupstackGisRetrieval
434
+ config: default
435
+ split: test
436
+ revision: None
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 7.681
440
+ - type: map_at_10
441
+ value: 10.655000000000001
442
+ - type: map_at_100
443
+ value: 11.274000000000001
444
+ - type: map_at_1000
445
+ value: 11.381
446
+ - type: map_at_3
447
+ value: 9.793000000000001
448
+ - type: map_at_5
449
+ value: 10.202
450
+ - type: mrr_at_1
451
+ value: 8.248999999999999
452
+ - type: mrr_at_10
453
+ value: 11.453000000000001
454
+ - type: mrr_at_100
455
+ value: 12.074
456
+ - type: mrr_at_1000
457
+ value: 12.174
458
+ - type: mrr_at_3
459
+ value: 10.452
460
+ - type: mrr_at_5
461
+ value: 10.989
462
+ - type: ndcg_at_1
463
+ value: 8.248999999999999
464
+ - type: ndcg_at_10
465
+ value: 12.467
466
+ - type: ndcg_at_100
467
+ value: 15.942
468
+ - type: ndcg_at_1000
469
+ value: 19.378999999999998
470
+ - type: ndcg_at_3
471
+ value: 10.631
472
+ - type: ndcg_at_5
473
+ value: 11.411
474
+ - type: precision_at_1
475
+ value: 8.248999999999999
476
+ - type: precision_at_10
477
+ value: 1.966
478
+ - type: precision_at_100
479
+ value: 0.40099999999999997
480
+ - type: precision_at_1000
481
+ value: 0.075
482
+ - type: precision_at_3
483
+ value: 4.444
484
+ - type: precision_at_5
485
+ value: 3.186
486
+ - type: recall_at_1
487
+ value: 7.681
488
+ - type: recall_at_10
489
+ value: 17.302
490
+ - type: recall_at_100
491
+ value: 34.014
492
+ - type: recall_at_1000
493
+ value: 61.207
494
+ - type: recall_at_3
495
+ value: 12.389
496
+ - type: recall_at_5
497
+ value: 14.158999999999999
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: cqadupstack/mathematica
502
+ name: MTEB CQADupstackMathematicaRetrieval
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 3.868
509
+ - type: map_at_10
510
+ value: 6.281000000000001
511
+ - type: map_at_100
512
+ value: 6.903
513
+ - type: map_at_1000
514
+ value: 7.038
515
+ - type: map_at_3
516
+ value: 5.234
517
+ - type: map_at_5
518
+ value: 5.685
519
+ - type: mrr_at_1
520
+ value: 5.1
521
+ - type: mrr_at_10
522
+ value: 8.148
523
+ - type: mrr_at_100
524
+ value: 8.846
525
+ - type: mrr_at_1000
526
+ value: 8.963000000000001
527
+ - type: mrr_at_3
528
+ value: 6.944
529
+ - type: mrr_at_5
530
+ value: 7.498
531
+ - type: ndcg_at_1
532
+ value: 5.1
533
+ - type: ndcg_at_10
534
+ value: 8.405999999999999
535
+ - type: ndcg_at_100
536
+ value: 12.014
537
+ - type: ndcg_at_1000
538
+ value: 15.956999999999999
539
+ - type: ndcg_at_3
540
+ value: 6.22
541
+ - type: ndcg_at_5
542
+ value: 6.962
543
+ - type: precision_at_1
544
+ value: 5.1
545
+ - type: precision_at_10
546
+ value: 1.8159999999999998
547
+ - type: precision_at_100
548
+ value: 0.437
549
+ - type: precision_at_1000
550
+ value: 0.09
551
+ - type: precision_at_3
552
+ value: 3.1510000000000002
553
+ - type: precision_at_5
554
+ value: 2.463
555
+ - type: recall_at_1
556
+ value: 3.868
557
+ - type: recall_at_10
558
+ value: 13.319
559
+ - type: recall_at_100
560
+ value: 29.985
561
+ - type: recall_at_1000
562
+ value: 59.245999999999995
563
+ - type: recall_at_3
564
+ value: 7.0809999999999995
565
+ - type: recall_at_5
566
+ value: 8.914
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: cqadupstack/physics
571
+ name: MTEB CQADupstackPhysicsRetrieval
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 13.091
578
+ - type: map_at_10
579
+ value: 18.701999999999998
580
+ - type: map_at_100
581
+ value: 19.897000000000002
582
+ - type: map_at_1000
583
+ value: 20.044
584
+ - type: map_at_3
585
+ value: 17.041999999999998
586
+ - type: map_at_5
587
+ value: 17.943
588
+ - type: mrr_at_1
589
+ value: 16.939
590
+ - type: mrr_at_10
591
+ value: 23.038
592
+ - type: mrr_at_100
593
+ value: 24.029
594
+ - type: mrr_at_1000
595
+ value: 24.12
596
+ - type: mrr_at_3
597
+ value: 21.221999999999998
598
+ - type: mrr_at_5
599
+ value: 22.198999999999998
600
+ - type: ndcg_at_1
601
+ value: 16.939
602
+ - type: ndcg_at_10
603
+ value: 22.566
604
+ - type: ndcg_at_100
605
+ value: 28.364
606
+ - type: ndcg_at_1000
607
+ value: 31.646
608
+ - type: ndcg_at_3
609
+ value: 19.646
610
+ - type: ndcg_at_5
611
+ value: 20.915
612
+ - type: precision_at_1
613
+ value: 16.939
614
+ - type: precision_at_10
615
+ value: 4.340999999999999
616
+ - type: precision_at_100
617
+ value: 0.882
618
+ - type: precision_at_1000
619
+ value: 0.13799999999999998
620
+ - type: precision_at_3
621
+ value: 9.785
622
+ - type: precision_at_5
623
+ value: 6.93
624
+ - type: recall_at_1
625
+ value: 13.091
626
+ - type: recall_at_10
627
+ value: 30.022
628
+ - type: recall_at_100
629
+ value: 55.579
630
+ - type: recall_at_1000
631
+ value: 78.14
632
+ - type: recall_at_3
633
+ value: 21.4
634
+ - type: recall_at_5
635
+ value: 25.020999999999997
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ type: cqadupstack/programmers
640
+ name: MTEB CQADupstackProgrammersRetrieval
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 11.315999999999999
647
+ - type: map_at_10
648
+ value: 16.191
649
+ - type: map_at_100
650
+ value: 17.116
651
+ - type: map_at_1000
652
+ value: 17.262
653
+ - type: map_at_3
654
+ value: 14.302999999999999
655
+ - type: map_at_5
656
+ value: 15.278
657
+ - type: mrr_at_1
658
+ value: 14.269000000000002
659
+ - type: mrr_at_10
660
+ value: 19.409000000000002
661
+ - type: mrr_at_100
662
+ value: 20.298
663
+ - type: mrr_at_1000
664
+ value: 20.393
665
+ - type: mrr_at_3
666
+ value: 17.504
667
+ - type: mrr_at_5
668
+ value: 18.423000000000002
669
+ - type: ndcg_at_1
670
+ value: 14.269000000000002
671
+ - type: ndcg_at_10
672
+ value: 19.735
673
+ - type: ndcg_at_100
674
+ value: 24.582
675
+ - type: ndcg_at_1000
676
+ value: 28.337
677
+ - type: ndcg_at_3
678
+ value: 16.220000000000002
679
+ - type: ndcg_at_5
680
+ value: 17.644000000000002
681
+ - type: precision_at_1
682
+ value: 14.269000000000002
683
+ - type: precision_at_10
684
+ value: 3.721
685
+ - type: precision_at_100
686
+ value: 0.752
687
+ - type: precision_at_1000
688
+ value: 0.129
689
+ - type: precision_at_3
690
+ value: 7.800999999999999
691
+ - type: precision_at_5
692
+ value: 5.753
693
+ - type: recall_at_1
694
+ value: 11.315999999999999
695
+ - type: recall_at_10
696
+ value: 27.693
697
+ - type: recall_at_100
698
+ value: 49.265
699
+ - type: recall_at_1000
700
+ value: 76.291
701
+ - type: recall_at_3
702
+ value: 17.593
703
+ - type: recall_at_5
704
+ value: 21.368000000000002
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ type: mteb/cqadupstack
709
+ name: MTEB CQADupstackRetrieval
710
+ config: default
711
+ split: test
712
+ revision: None
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 11.131583333333332
716
+ - type: map_at_10
717
+ value: 15.4605
718
+ - type: map_at_100
719
+ value: 16.3075
720
+ - type: map_at_1000
721
+ value: 16.4375
722
+ - type: map_at_3
723
+ value: 13.995833333333332
724
+ - type: map_at_5
725
+ value: 14.783666666666667
726
+ - type: mrr_at_1
727
+ value: 13.805833333333334
728
+ - type: mrr_at_10
729
+ value: 18.405749999999998
730
+ - type: mrr_at_100
731
+ value: 19.17516666666667
732
+ - type: mrr_at_1000
733
+ value: 19.265833333333333
734
+ - type: mrr_at_3
735
+ value: 16.892416666666666
736
+ - type: mrr_at_5
737
+ value: 17.71058333333333
738
+ - type: ndcg_at_1
739
+ value: 13.805833333333334
740
+ - type: ndcg_at_10
741
+ value: 18.500666666666664
742
+ - type: ndcg_at_100
743
+ value: 22.78191666666667
744
+ - type: ndcg_at_1000
745
+ value: 26.095583333333334
746
+ - type: ndcg_at_3
747
+ value: 15.846916666666663
748
+ - type: ndcg_at_5
749
+ value: 17.004250000000003
750
+ - type: precision_at_1
751
+ value: 13.805833333333334
752
+ - type: precision_at_10
753
+ value: 3.4233333333333325
754
+ - type: precision_at_100
755
+ value: 0.6828333333333333
756
+ - type: precision_at_1000
757
+ value: 0.11641666666666667
758
+ - type: precision_at_3
759
+ value: 7.511749999999999
760
+ - type: precision_at_5
761
+ value: 5.440916666666666
762
+ - type: recall_at_1
763
+ value: 11.131583333333332
764
+ - type: recall_at_10
765
+ value: 24.794166666666666
766
+ - type: recall_at_100
767
+ value: 44.356
768
+ - type: recall_at_1000
769
+ value: 68.71899999999998
770
+ - type: recall_at_3
771
+ value: 17.145583333333335
772
+ - type: recall_at_5
773
+ value: 20.229083333333335
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ type: cqadupstack/stats
778
+ name: MTEB CQADupstackStatsRetrieval
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 7.5520000000000005
785
+ - type: map_at_10
786
+ value: 10.355
787
+ - type: map_at_100
788
+ value: 10.875
789
+ - type: map_at_1000
790
+ value: 10.972999999999999
791
+ - type: map_at_3
792
+ value: 9.341000000000001
793
+ - type: map_at_5
794
+ value: 9.969
795
+ - type: mrr_at_1
796
+ value: 9.049
797
+ - type: mrr_at_10
798
+ value: 12.002
799
+ - type: mrr_at_100
800
+ value: 12.55
801
+ - type: mrr_at_1000
802
+ value: 12.635
803
+ - type: mrr_at_3
804
+ value: 11.12
805
+ - type: mrr_at_5
806
+ value: 11.626
807
+ - type: ndcg_at_1
808
+ value: 9.049
809
+ - type: ndcg_at_10
810
+ value: 12.241
811
+ - type: ndcg_at_100
812
+ value: 15.231
813
+ - type: ndcg_at_1000
814
+ value: 18.265
815
+ - type: ndcg_at_3
816
+ value: 10.424999999999999
817
+ - type: ndcg_at_5
818
+ value: 11.360000000000001
819
+ - type: precision_at_1
820
+ value: 9.049
821
+ - type: precision_at_10
822
+ value: 2.147
823
+ - type: precision_at_100
824
+ value: 0.411
825
+ - type: precision_at_1000
826
+ value: 0.073
827
+ - type: precision_at_3
828
+ value: 4.755
829
+ - type: precision_at_5
830
+ value: 3.558
831
+ - type: recall_at_1
832
+ value: 7.5520000000000005
833
+ - type: recall_at_10
834
+ value: 16.448999999999998
835
+ - type: recall_at_100
836
+ value: 30.505
837
+ - type: recall_at_1000
838
+ value: 54.435
839
+ - type: recall_at_3
840
+ value: 11.366
841
+ - type: recall_at_5
842
+ value: 13.758999999999999
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ type: cqadupstack/tex
847
+ name: MTEB CQADupstackTexRetrieval
848
+ config: default
849
+ split: test
850
+ revision: None
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 5.954000000000001
854
+ - type: map_at_10
855
+ value: 8.229000000000001
856
+ - type: map_at_100
857
+ value: 8.694
858
+ - type: map_at_1000
859
+ value: 8.788
860
+ - type: map_at_3
861
+ value: 7.5
862
+ - type: map_at_5
863
+ value: 7.856000000000001
864
+ - type: mrr_at_1
865
+ value: 7.983
866
+ - type: mrr_at_10
867
+ value: 10.833
868
+ - type: mrr_at_100
869
+ value: 11.324
870
+ - type: mrr_at_1000
871
+ value: 11.404
872
+ - type: mrr_at_3
873
+ value: 9.911
874
+ - type: mrr_at_5
875
+ value: 10.401
876
+ - type: ndcg_at_1
877
+ value: 7.983
878
+ - type: ndcg_at_10
879
+ value: 10.126
880
+ - type: ndcg_at_100
881
+ value: 12.702
882
+ - type: ndcg_at_1000
883
+ value: 15.581999999999999
884
+ - type: ndcg_at_3
885
+ value: 8.779
886
+ - type: ndcg_at_5
887
+ value: 9.279
888
+ - type: precision_at_1
889
+ value: 7.983
890
+ - type: precision_at_10
891
+ value: 1.955
892
+ - type: precision_at_100
893
+ value: 0.392
894
+ - type: precision_at_1000
895
+ value: 0.076
896
+ - type: precision_at_3
897
+ value: 4.382
898
+ - type: precision_at_5
899
+ value: 3.09
900
+ - type: recall_at_1
901
+ value: 5.954000000000001
902
+ - type: recall_at_10
903
+ value: 13.472000000000001
904
+ - type: recall_at_100
905
+ value: 25.407999999999998
906
+ - type: recall_at_1000
907
+ value: 47.028
908
+ - type: recall_at_3
909
+ value: 9.367
910
+ - type: recall_at_5
911
+ value: 10.867
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ type: cqadupstack/unix
916
+ name: MTEB CQADupstackUnixRetrieval
917
+ config: default
918
+ split: test
919
+ revision: None
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 8.894
923
+ - type: map_at_10
924
+ value: 12.758
925
+ - type: map_at_100
926
+ value: 13.639999999999999
927
+ - type: map_at_1000
928
+ value: 13.76
929
+ - type: map_at_3
930
+ value: 11.447000000000001
931
+ - type: map_at_5
932
+ value: 12.205
933
+ - type: mrr_at_1
934
+ value: 10.914
935
+ - type: mrr_at_10
936
+ value: 15.739
937
+ - type: mrr_at_100
938
+ value: 16.589000000000002
939
+ - type: mrr_at_1000
940
+ value: 16.679
941
+ - type: mrr_at_3
942
+ value: 14.179
943
+ - type: mrr_at_5
944
+ value: 15.162999999999998
945
+ - type: ndcg_at_1
946
+ value: 10.914
947
+ - type: ndcg_at_10
948
+ value: 15.629000000000001
949
+ - type: ndcg_at_100
950
+ value: 20.261000000000003
951
+ - type: ndcg_at_1000
952
+ value: 23.781
953
+ - type: ndcg_at_3
954
+ value: 13.102
955
+ - type: ndcg_at_5
956
+ value: 14.338000000000001
957
+ - type: precision_at_1
958
+ value: 10.914
959
+ - type: precision_at_10
960
+ value: 2.91
961
+ - type: precision_at_100
962
+ value: 0.601
963
+ - type: precision_at_1000
964
+ value: 0.10200000000000001
965
+ - type: precision_at_3
966
+ value: 6.311999999999999
967
+ - type: precision_at_5
968
+ value: 4.683
969
+ - type: recall_at_1
970
+ value: 8.894
971
+ - type: recall_at_10
972
+ value: 21.45
973
+ - type: recall_at_100
974
+ value: 42.617
975
+ - type: recall_at_1000
976
+ value: 69.233
977
+ - type: recall_at_3
978
+ value: 14.52
979
+ - type: recall_at_5
980
+ value: 17.681
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ type: cqadupstack/webmasters
985
+ name: MTEB CQADupstackWebmastersRetrieval
986
+ config: default
987
+ split: test
988
+ revision: None
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 12.158
992
+ - type: map_at_10
993
+ value: 16.332
994
+ - type: map_at_100
995
+ value: 17.458000000000002
996
+ - type: map_at_1000
997
+ value: 17.687
998
+ - type: map_at_3
999
+ value: 14.529
1000
+ - type: map_at_5
1001
+ value: 15.515
1002
+ - type: mrr_at_1
1003
+ value: 15.809999999999999
1004
+ - type: mrr_at_10
1005
+ value: 19.917
1006
+ - type: mrr_at_100
1007
+ value: 20.875
1008
+ - type: mrr_at_1000
1009
+ value: 20.985
1010
+ - type: mrr_at_3
1011
+ value: 18.116
1012
+ - type: mrr_at_5
1013
+ value: 19.025
1014
+ - type: ndcg_at_1
1015
+ value: 15.809999999999999
1016
+ - type: ndcg_at_10
1017
+ value: 19.869999999999997
1018
+ - type: ndcg_at_100
1019
+ value: 24.907
1020
+ - type: ndcg_at_1000
1021
+ value: 29.076999999999998
1022
+ - type: ndcg_at_3
1023
+ value: 16.899
1024
+ - type: ndcg_at_5
1025
+ value: 18.23
1026
+ - type: precision_at_1
1027
+ value: 15.809999999999999
1028
+ - type: precision_at_10
1029
+ value: 3.972
1030
+ - type: precision_at_100
1031
+ value: 0.9860000000000001
1032
+ - type: precision_at_1000
1033
+ value: 0.203
1034
+ - type: precision_at_3
1035
+ value: 8.169
1036
+ - type: precision_at_5
1037
+ value: 6.087
1038
+ - type: recall_at_1
1039
+ value: 12.158
1040
+ - type: recall_at_10
1041
+ value: 26.338
1042
+ - type: recall_at_100
1043
+ value: 49.845
1044
+ - type: recall_at_1000
1045
+ value: 78.82000000000001
1046
+ - type: recall_at_3
1047
+ value: 16.997
1048
+ - type: recall_at_5
1049
+ value: 20.848
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ type: cqadupstack/wordpress
1054
+ name: MTEB CQADupstackWordpressRetrieval
1055
+ config: default
1056
+ split: test
1057
+ revision: None
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 8.01
1061
+ - type: map_at_10
1062
+ value: 10.889
1063
+ - type: map_at_100
1064
+ value: 11.562
1065
+ - type: map_at_1000
1066
+ value: 11.65
1067
+ - type: map_at_3
1068
+ value: 9.718
1069
+ - type: map_at_5
1070
+ value: 10.358
1071
+ - type: mrr_at_1
1072
+ value: 8.688
1073
+ - type: mrr_at_10
1074
+ value: 11.862
1075
+ - type: mrr_at_100
1076
+ value: 12.558
1077
+ - type: mrr_at_1000
1078
+ value: 12.642000000000001
1079
+ - type: mrr_at_3
1080
+ value: 10.598
1081
+ - type: mrr_at_5
1082
+ value: 11.328000000000001
1083
+ - type: ndcg_at_1
1084
+ value: 8.688
1085
+ - type: ndcg_at_10
1086
+ value: 12.959999999999999
1087
+ - type: ndcg_at_100
1088
+ value: 16.744
1089
+ - type: ndcg_at_1000
1090
+ value: 19.564999999999998
1091
+ - type: ndcg_at_3
1092
+ value: 10.476
1093
+ - type: ndcg_at_5
1094
+ value: 11.639
1095
+ - type: precision_at_1
1096
+ value: 8.688
1097
+ - type: precision_at_10
1098
+ value: 2.089
1099
+ - type: precision_at_100
1100
+ value: 0.43299999999999994
1101
+ - type: precision_at_1000
1102
+ value: 0.07200000000000001
1103
+ - type: precision_at_3
1104
+ value: 4.375
1105
+ - type: precision_at_5
1106
+ value: 3.253
1107
+ - type: recall_at_1
1108
+ value: 8.01
1109
+ - type: recall_at_10
1110
+ value: 18.589
1111
+ - type: recall_at_100
1112
+ value: 36.857
1113
+ - type: recall_at_1000
1114
+ value: 59.047000000000004
1115
+ - type: recall_at_3
1116
+ value: 11.774
1117
+ - type: recall_at_5
1118
+ value: 14.516000000000002
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ type: climate-fever
1123
+ name: MTEB ClimateFEVER
1124
+ config: default
1125
+ split: test
1126
+ revision: None
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 6.4719999999999995
1130
+ - type: map_at_10
1131
+ value: 12.322
1132
+ - type: map_at_100
1133
+ value: 14.122000000000002
1134
+ - type: map_at_1000
1135
+ value: 14.35
1136
+ - type: map_at_3
1137
+ value: 9.667
1138
+ - type: map_at_5
1139
+ value: 10.931000000000001
1140
+ - type: mrr_at_1
1141
+ value: 15.179
1142
+ - type: mrr_at_10
1143
+ value: 24.864
1144
+ - type: mrr_at_100
1145
+ value: 26.144000000000002
1146
+ - type: mrr_at_1000
1147
+ value: 26.198
1148
+ - type: mrr_at_3
1149
+ value: 20.999000000000002
1150
+ - type: mrr_at_5
1151
+ value: 23.097
1152
+ - type: ndcg_at_1
1153
+ value: 15.179
1154
+ - type: ndcg_at_10
1155
+ value: 18.951999999999998
1156
+ - type: ndcg_at_100
1157
+ value: 26.924
1158
+ - type: ndcg_at_1000
1159
+ value: 30.991999999999997
1160
+ - type: ndcg_at_3
1161
+ value: 13.778000000000002
1162
+ - type: ndcg_at_5
1163
+ value: 15.549
1164
+ - type: precision_at_1
1165
+ value: 15.179
1166
+ - type: precision_at_10
1167
+ value: 6.625
1168
+ - type: precision_at_100
1169
+ value: 1.516
1170
+ - type: precision_at_1000
1171
+ value: 0.22599999999999998
1172
+ - type: precision_at_3
1173
+ value: 10.51
1174
+ - type: precision_at_5
1175
+ value: 8.847
1176
+ - type: recall_at_1
1177
+ value: 6.4719999999999995
1178
+ - type: recall_at_10
1179
+ value: 25.191999999999997
1180
+ - type: recall_at_100
1181
+ value: 53.315
1182
+ - type: recall_at_1000
1183
+ value: 76.163
1184
+ - type: recall_at_3
1185
+ value: 12.834999999999999
1186
+ - type: recall_at_5
1187
+ value: 17.388
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ type: dbpedia-entity
1192
+ name: MTEB DBPedia
1193
+ config: default
1194
+ split: test
1195
+ revision: None
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 1.947
1199
+ - type: map_at_10
1200
+ value: 4.858
1201
+ - type: map_at_100
1202
+ value: 7.185999999999999
1203
+ - type: map_at_1000
1204
+ value: 7.931000000000001
1205
+ - type: map_at_3
1206
+ value: 3.2939999999999996
1207
+ - type: map_at_5
1208
+ value: 3.914
1209
+ - type: mrr_at_1
1210
+ value: 23.25
1211
+ - type: mrr_at_10
1212
+ value: 33.035
1213
+ - type: mrr_at_100
1214
+ value: 33.721000000000004
1215
+ - type: mrr_at_1000
1216
+ value: 33.789
1217
+ - type: mrr_at_3
1218
+ value: 29.75
1219
+ - type: mrr_at_5
1220
+ value: 31.738
1221
+ - type: ndcg_at_1
1222
+ value: 15.625
1223
+ - type: ndcg_at_10
1224
+ value: 13.211999999999998
1225
+ - type: ndcg_at_100
1226
+ value: 16.422
1227
+ - type: ndcg_at_1000
1228
+ value: 23.058999999999997
1229
+ - type: ndcg_at_3
1230
+ value: 14.573
1231
+ - type: ndcg_at_5
1232
+ value: 13.733999999999998
1233
+ - type: precision_at_1
1234
+ value: 23.25
1235
+ - type: precision_at_10
1236
+ value: 12.45
1237
+ - type: precision_at_100
1238
+ value: 4.192
1239
+ - type: precision_at_1000
1240
+ value: 1.083
1241
+ - type: precision_at_3
1242
+ value: 18.667
1243
+ - type: precision_at_5
1244
+ value: 15.950000000000001
1245
+ - type: recall_at_1
1246
+ value: 1.947
1247
+ - type: recall_at_10
1248
+ value: 9.317
1249
+ - type: recall_at_100
1250
+ value: 23.066
1251
+ - type: recall_at_1000
1252
+ value: 45.704
1253
+ - type: recall_at_3
1254
+ value: 4.12
1255
+ - type: recall_at_5
1256
+ value: 5.591
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ type: mteb/emotion
1261
+ name: MTEB EmotionClassification
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 42.855
1268
+ - type: f1
1269
+ value: 39.029787102377576
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ type: fever
1274
+ name: MTEB FEVER
1275
+ config: default
1276
+ split: test
1277
+ revision: None
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 8.461
1281
+ - type: map_at_10
1282
+ value: 13.655999999999999
1283
+ - type: map_at_100
1284
+ value: 14.499
1285
+ - type: map_at_1000
1286
+ value: 14.585999999999999
1287
+ - type: map_at_3
1288
+ value: 11.848
1289
+ - type: map_at_5
1290
+ value: 12.842999999999998
1291
+ - type: mrr_at_1
1292
+ value: 9.136
1293
+ - type: mrr_at_10
1294
+ value: 14.587
1295
+ - type: mrr_at_100
1296
+ value: 15.436
1297
+ - type: mrr_at_1000
1298
+ value: 15.518
1299
+ - type: mrr_at_3
1300
+ value: 12.690999999999999
1301
+ - type: mrr_at_5
1302
+ value: 13.747000000000002
1303
+ - type: ndcg_at_1
1304
+ value: 9.136
1305
+ - type: ndcg_at_10
1306
+ value: 16.958000000000002
1307
+ - type: ndcg_at_100
1308
+ value: 21.43
1309
+ - type: ndcg_at_1000
1310
+ value: 24.031
1311
+ - type: ndcg_at_3
1312
+ value: 13.191
1313
+ - type: ndcg_at_5
1314
+ value: 14.987
1315
+ - type: precision_at_1
1316
+ value: 9.136
1317
+ - type: precision_at_10
1318
+ value: 2.897
1319
+ - type: precision_at_100
1320
+ value: 0.532
1321
+ - type: precision_at_1000
1322
+ value: 0.077
1323
+ - type: precision_at_3
1324
+ value: 5.8709999999999996
1325
+ - type: precision_at_5
1326
+ value: 4.47
1327
+ - type: recall_at_1
1328
+ value: 8.461
1329
+ - type: recall_at_10
1330
+ value: 26.509
1331
+ - type: recall_at_100
1332
+ value: 47.776
1333
+ - type: recall_at_1000
1334
+ value: 68.26299999999999
1335
+ - type: recall_at_3
1336
+ value: 16.203
1337
+ - type: recall_at_5
1338
+ value: 20.505000000000003
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ type: fiqa
1343
+ name: MTEB FiQA2018
1344
+ config: default
1345
+ split: test
1346
+ revision: None
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 7.396
1350
+ - type: map_at_10
1351
+ value: 12.393
1352
+ - type: map_at_100
1353
+ value: 13.857
1354
+ - type: map_at_1000
1355
+ value: 14.086000000000002
1356
+ - type: map_at_3
1357
+ value: 10.545
1358
+ - type: map_at_5
1359
+ value: 11.505
1360
+ - type: mrr_at_1
1361
+ value: 15.432000000000002
1362
+ - type: mrr_at_10
1363
+ value: 21.615000000000002
1364
+ - type: mrr_at_100
1365
+ value: 22.833000000000002
1366
+ - type: mrr_at_1000
1367
+ value: 22.931
1368
+ - type: mrr_at_3
1369
+ value: 19.522000000000002
1370
+ - type: mrr_at_5
1371
+ value: 20.663999999999998
1372
+ - type: ndcg_at_1
1373
+ value: 15.432000000000002
1374
+ - type: ndcg_at_10
1375
+ value: 16.986
1376
+ - type: ndcg_at_100
1377
+ value: 23.880000000000003
1378
+ - type: ndcg_at_1000
1379
+ value: 28.762999999999998
1380
+ - type: ndcg_at_3
1381
+ value: 14.482999999999999
1382
+ - type: ndcg_at_5
1383
+ value: 15.334999999999999
1384
+ - type: precision_at_1
1385
+ value: 15.432000000000002
1386
+ - type: precision_at_10
1387
+ value: 4.984999999999999
1388
+ - type: precision_at_100
1389
+ value: 1.167
1390
+ - type: precision_at_1000
1391
+ value: 0.2
1392
+ - type: precision_at_3
1393
+ value: 9.825000000000001
1394
+ - type: precision_at_5
1395
+ value: 7.469
1396
+ - type: recall_at_1
1397
+ value: 7.396
1398
+ - type: recall_at_10
1399
+ value: 21.389
1400
+ - type: recall_at_100
1401
+ value: 48.107
1402
+ - type: recall_at_1000
1403
+ value: 78.366
1404
+ - type: recall_at_3
1405
+ value: 13.181000000000001
1406
+ - type: recall_at_5
1407
+ value: 16.611
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ type: hotpotqa
1412
+ name: MTEB HotpotQA
1413
+ config: default
1414
+ split: test
1415
+ revision: None
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 11.884
1419
+ - type: map_at_10
1420
+ value: 17.09
1421
+ - type: map_at_100
1422
+ value: 17.96
1423
+ - type: map_at_1000
1424
+ value: 18.081
1425
+ - type: map_at_3
1426
+ value: 15.296000000000001
1427
+ - type: map_at_5
1428
+ value: 16.289
1429
+ - type: mrr_at_1
1430
+ value: 23.768
1431
+ - type: mrr_at_10
1432
+ value: 29.991
1433
+ - type: mrr_at_100
1434
+ value: 30.862000000000002
1435
+ - type: mrr_at_1000
1436
+ value: 30.935000000000002
1437
+ - type: mrr_at_3
1438
+ value: 27.986
1439
+ - type: mrr_at_5
1440
+ value: 29.078
1441
+ - type: ndcg_at_1
1442
+ value: 23.768
1443
+ - type: ndcg_at_10
1444
+ value: 22.634999999999998
1445
+ - type: ndcg_at_100
1446
+ value: 27.059
1447
+ - type: ndcg_at_1000
1448
+ value: 30.145
1449
+ - type: ndcg_at_3
1450
+ value: 19.058
1451
+ - type: ndcg_at_5
1452
+ value: 20.762
1453
+ - type: precision_at_1
1454
+ value: 23.768
1455
+ - type: precision_at_10
1456
+ value: 5.2490000000000006
1457
+ - type: precision_at_100
1458
+ value: 0.8829999999999999
1459
+ - type: precision_at_1000
1460
+ value: 0.13
1461
+ - type: precision_at_3
1462
+ value: 12.091000000000001
1463
+ - type: precision_at_5
1464
+ value: 8.605
1465
+ - type: recall_at_1
1466
+ value: 11.884
1467
+ - type: recall_at_10
1468
+ value: 26.246000000000002
1469
+ - type: recall_at_100
1470
+ value: 44.153
1471
+ - type: recall_at_1000
1472
+ value: 64.889
1473
+ - type: recall_at_3
1474
+ value: 18.136
1475
+ - type: recall_at_5
1476
+ value: 21.512
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ type: mteb/imdb
1481
+ name: MTEB ImdbClassification
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 71.9232
1488
+ - type: ap
1489
+ value: 66.56619827391917
1490
+ - type: f1
1491
+ value: 71.60536244284128
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ type: msmarco
1496
+ name: MTEB MSMARCO
1497
+ config: default
1498
+ split: dev
1499
+ revision: None
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 3.037
1503
+ - type: map_at_10
1504
+ value: 5.414
1505
+ - type: map_at_100
1506
+ value: 6.072
1507
+ - type: map_at_1000
1508
+ value: 6.172
1509
+ - type: map_at_3
1510
+ value: 4.437
1511
+ - type: map_at_5
1512
+ value: 4.939
1513
+ - type: mrr_at_1
1514
+ value: 3.123
1515
+ - type: mrr_at_10
1516
+ value: 5.572
1517
+ - type: mrr_at_100
1518
+ value: 6.235
1519
+ - type: mrr_at_1000
1520
+ value: 6.334
1521
+ - type: mrr_at_3
1522
+ value: 4.563
1523
+ - type: mrr_at_5
1524
+ value: 5.09
1525
+ - type: ndcg_at_1
1526
+ value: 3.123
1527
+ - type: ndcg_at_10
1528
+ value: 7.027
1529
+ - type: ndcg_at_100
1530
+ value: 10.776
1531
+ - type: ndcg_at_1000
1532
+ value: 13.904
1533
+ - type: ndcg_at_3
1534
+ value: 4.95
1535
+ - type: ndcg_at_5
1536
+ value: 5.865
1537
+ - type: precision_at_1
1538
+ value: 3.123
1539
+ - type: precision_at_10
1540
+ value: 1.252
1541
+ - type: precision_at_100
1542
+ value: 0.32299999999999995
1543
+ - type: precision_at_1000
1544
+ value: 0.059000000000000004
1545
+ - type: precision_at_3
1546
+ value: 2.168
1547
+ - type: precision_at_5
1548
+ value: 1.7680000000000002
1549
+ - type: recall_at_1
1550
+ value: 3.037
1551
+ - type: recall_at_10
1552
+ value: 12.11
1553
+ - type: recall_at_100
1554
+ value: 30.714999999999996
1555
+ - type: recall_at_1000
1556
+ value: 56.006
1557
+ - type: recall_at_3
1558
+ value: 6.3229999999999995
1559
+ - type: recall_at_5
1560
+ value: 8.518
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ type: mteb/mtop_domain
1565
+ name: MTEB MTOPDomainClassification (en)
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 91.24259005927954
1572
+ - type: f1
1573
+ value: 90.7594022786747
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ type: mteb/mtop_intent
1578
+ name: MTEB MTOPIntentClassification (en)
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 74.08344733242134
1585
+ - type: f1
1586
+ value: 52.377556461789055
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ type: mteb/amazon_massive_intent
1591
+ name: MTEB MassiveIntentClassification (en)
1592
+ config: en
1593
+ split: test
1594
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 69.99327505043712
1598
+ - type: f1
1599
+ value: 66.15141376479805
1600
+ - task:
1601
+ type: Classification
1602
+ dataset:
1603
+ type: mteb/amazon_massive_scenario
1604
+ name: MTEB MassiveScenarioClassification (en)
1605
+ config: en
1606
+ split: test
1607
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1608
+ metrics:
1609
+ - type: accuracy
1610
+ value: 75.1546738399462
1611
+ - type: f1
1612
+ value: 74.83013584700711
1613
+ - task:
1614
+ type: Clustering
1615
+ dataset:
1616
+ type: mteb/medrxiv-clustering-p2p
1617
+ name: MTEB MedrxivClusteringP2P
1618
+ config: default
1619
+ split: test
1620
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1621
+ metrics:
1622
+ - type: v_measure
1623
+ value: 30.146364191412356
1624
+ - task:
1625
+ type: Clustering
1626
+ dataset:
1627
+ type: mteb/medrxiv-clustering-s2s
1628
+ name: MTEB MedrxivClusteringS2S
1629
+ config: default
1630
+ split: test
1631
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1632
+ metrics:
1633
+ - type: v_measure
1634
+ value: 26.96347584990607
1635
+ - task:
1636
+ type: Reranking
1637
+ dataset:
1638
+ type: mteb/mind_small
1639
+ name: MTEB MindSmallReranking
1640
+ config: default
1641
+ split: test
1642
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1643
+ metrics:
1644
+ - type: map
1645
+ value: 29.520993847103533
1646
+ - type: mrr
1647
+ value: 30.402007095845374
1648
+ - task:
1649
+ type: Retrieval
1650
+ dataset:
1651
+ type: nfcorpus
1652
+ name: MTEB NFCorpus
1653
+ config: default
1654
+ split: test
1655
+ revision: None
1656
+ metrics:
1657
+ - type: map_at_1
1658
+ value: 1.72
1659
+ - type: map_at_10
1660
+ value: 4.041
1661
+ - type: map_at_100
1662
+ value: 5.356000000000001
1663
+ - type: map_at_1000
1664
+ value: 6.413
1665
+ - type: map_at_3
1666
+ value: 2.9770000000000003
1667
+ - type: map_at_5
1668
+ value: 3.3689999999999998
1669
+ - type: mrr_at_1
1670
+ value: 21.981
1671
+ - type: mrr_at_10
1672
+ value: 30.286
1673
+ - type: mrr_at_100
1674
+ value: 31.272
1675
+ - type: mrr_at_1000
1676
+ value: 31.347
1677
+ - type: mrr_at_3
1678
+ value: 27.193
1679
+ - type: mrr_at_5
1680
+ value: 28.694999999999997
1681
+ - type: ndcg_at_1
1682
+ value: 19.814
1683
+ - type: ndcg_at_10
1684
+ value: 15.732
1685
+ - type: ndcg_at_100
1686
+ value: 16.033
1687
+ - type: ndcg_at_1000
1688
+ value: 25.865
1689
+ - type: ndcg_at_3
1690
+ value: 17.944
1691
+ - type: ndcg_at_5
1692
+ value: 16.634
1693
+ - type: precision_at_1
1694
+ value: 21.981
1695
+ - type: precision_at_10
1696
+ value: 12.786
1697
+ - type: precision_at_100
1698
+ value: 4.83
1699
+ - type: precision_at_1000
1700
+ value: 1.765
1701
+ - type: precision_at_3
1702
+ value: 17.75
1703
+ - type: precision_at_5
1704
+ value: 15.232000000000001
1705
+ - type: recall_at_1
1706
+ value: 1.72
1707
+ - type: recall_at_10
1708
+ value: 7.436
1709
+ - type: recall_at_100
1710
+ value: 20.275000000000002
1711
+ - type: recall_at_1000
1712
+ value: 54.19500000000001
1713
+ - type: recall_at_3
1714
+ value: 3.787
1715
+ - type: recall_at_5
1716
+ value: 4.829
1717
+ - task:
1718
+ type: Retrieval
1719
+ dataset:
1720
+ type: nq
1721
+ name: MTEB NQ
1722
+ config: default
1723
+ split: test
1724
+ revision: None
1725
+ metrics:
1726
+ - type: map_at_1
1727
+ value: 7.964
1728
+ - type: map_at_10
1729
+ value: 14.025000000000002
1730
+ - type: map_at_100
1731
+ value: 15.222
1732
+ - type: map_at_1000
1733
+ value: 15.32
1734
+ - type: map_at_3
1735
+ value: 11.886
1736
+ - type: map_at_5
1737
+ value: 13.056999999999999
1738
+ - type: mrr_at_1
1739
+ value: 9.183
1740
+ - type: mrr_at_10
1741
+ value: 15.651000000000002
1742
+ - type: mrr_at_100
1743
+ value: 16.753999999999998
1744
+ - type: mrr_at_1000
1745
+ value: 16.833000000000002
1746
+ - type: mrr_at_3
1747
+ value: 13.437
1748
+ - type: mrr_at_5
1749
+ value: 14.69
1750
+ - type: ndcg_at_1
1751
+ value: 9.183
1752
+ - type: ndcg_at_10
1753
+ value: 17.96
1754
+ - type: ndcg_at_100
1755
+ value: 23.823
1756
+ - type: ndcg_at_1000
1757
+ value: 26.461000000000002
1758
+ - type: ndcg_at_3
1759
+ value: 13.536999999999999
1760
+ - type: ndcg_at_5
1761
+ value: 15.642
1762
+ - type: precision_at_1
1763
+ value: 9.183
1764
+ - type: precision_at_10
1765
+ value: 3.366
1766
+ - type: precision_at_100
1767
+ value: 0.67
1768
+ - type: precision_at_1000
1769
+ value: 0.092
1770
+ - type: precision_at_3
1771
+ value: 6.547
1772
+ - type: precision_at_5
1773
+ value: 5.098
1774
+ - type: recall_at_1
1775
+ value: 7.964
1776
+ - type: recall_at_10
1777
+ value: 28.599000000000004
1778
+ - type: recall_at_100
1779
+ value: 55.381
1780
+ - type: recall_at_1000
1781
+ value: 75.63
1782
+ - type: recall_at_3
1783
+ value: 16.77
1784
+ - type: recall_at_5
1785
+ value: 21.671000000000003
1786
+ - task:
1787
+ type: Retrieval
1788
+ dataset:
1789
+ type: quora
1790
+ name: MTEB QuoraRetrieval
1791
+ config: default
1792
+ split: test
1793
+ revision: None
1794
+ metrics:
1795
+ - type: map_at_1
1796
+ value: 59.846999999999994
1797
+ - type: map_at_10
1798
+ value: 73.18599999999999
1799
+ - type: map_at_100
1800
+ value: 74.055
1801
+ - type: map_at_1000
1802
+ value: 74.09
1803
+ - type: map_at_3
1804
+ value: 69.95700000000001
1805
+ - type: map_at_5
1806
+ value: 71.925
1807
+ - type: mrr_at_1
1808
+ value: 69.0
1809
+ - type: mrr_at_10
1810
+ value: 77.23299999999999
1811
+ - type: mrr_at_100
1812
+ value: 77.52
1813
+ - type: mrr_at_1000
1814
+ value: 77.526
1815
+ - type: mrr_at_3
1816
+ value: 75.59
1817
+ - type: mrr_at_5
1818
+ value: 76.63799999999999
1819
+ - type: ndcg_at_1
1820
+ value: 69.02000000000001
1821
+ - type: ndcg_at_10
1822
+ value: 78.226
1823
+ - type: ndcg_at_100
1824
+ value: 80.60199999999999
1825
+ - type: ndcg_at_1000
1826
+ value: 80.971
1827
+ - type: ndcg_at_3
1828
+ value: 74.124
1829
+ - type: ndcg_at_5
1830
+ value: 76.265
1831
+ - type: precision_at_1
1832
+ value: 69.02000000000001
1833
+ - type: precision_at_10
1834
+ value: 12.102
1835
+ - type: precision_at_100
1836
+ value: 1.468
1837
+ - type: precision_at_1000
1838
+ value: 0.155
1839
+ - type: precision_at_3
1840
+ value: 32.5
1841
+ - type: precision_at_5
1842
+ value: 21.7
1843
+ - type: recall_at_1
1844
+ value: 59.846999999999994
1845
+ - type: recall_at_10
1846
+ value: 88.485
1847
+ - type: recall_at_100
1848
+ value: 97.425
1849
+ - type: recall_at_1000
1850
+ value: 99.523
1851
+ - type: recall_at_3
1852
+ value: 77.051
1853
+ - type: recall_at_5
1854
+ value: 82.762
1855
+ - task:
1856
+ type: Clustering
1857
+ dataset:
1858
+ type: mteb/reddit-clustering
1859
+ name: MTEB RedditClustering
1860
+ config: default
1861
+ split: test
1862
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1863
+ metrics:
1864
+ - type: v_measure
1865
+ value: 38.67296729610079
1866
+ - task:
1867
+ type: Clustering
1868
+ dataset:
1869
+ type: mteb/reddit-clustering-p2p
1870
+ name: MTEB RedditClusteringP2P
1871
+ config: default
1872
+ split: test
1873
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1874
+ metrics:
1875
+ - type: v_measure
1876
+ value: 53.42017351823769
1877
+ - task:
1878
+ type: Retrieval
1879
+ dataset:
1880
+ type: scidocs
1881
+ name: MTEB SCIDOCS
1882
+ config: default
1883
+ split: test
1884
+ revision: None
1885
+ metrics:
1886
+ - type: map_at_1
1887
+ value: 0.893
1888
+ - type: map_at_10
1889
+ value: 2.804
1890
+ - type: map_at_100
1891
+ value: 3.6740000000000004
1892
+ - type: map_at_1000
1893
+ value: 3.94
1894
+ - type: map_at_3
1895
+ value: 1.926
1896
+ - type: map_at_5
1897
+ value: 2.363
1898
+ - type: mrr_at_1
1899
+ value: 4.3
1900
+ - type: mrr_at_10
1901
+ value: 9.520000000000001
1902
+ - type: mrr_at_100
1903
+ value: 10.692
1904
+ - type: mrr_at_1000
1905
+ value: 10.841000000000001
1906
+ - type: mrr_at_3
1907
+ value: 7.6
1908
+ - type: mrr_at_5
1909
+ value: 8.63
1910
+ - type: ndcg_at_1
1911
+ value: 4.3
1912
+ - type: ndcg_at_10
1913
+ value: 5.531
1914
+ - type: ndcg_at_100
1915
+ value: 10.512
1916
+ - type: ndcg_at_1000
1917
+ value: 16.683
1918
+ - type: ndcg_at_3
1919
+ value: 4.632
1920
+ - type: ndcg_at_5
1921
+ value: 4.3229999999999995
1922
+ - type: precision_at_1
1923
+ value: 4.3
1924
+ - type: precision_at_10
1925
+ value: 3.16
1926
+ - type: precision_at_100
1927
+ value: 1.065
1928
+ - type: precision_at_1000
1929
+ value: 0.256
1930
+ - type: precision_at_3
1931
+ value: 4.667000000000001
1932
+ - type: precision_at_5
1933
+ value: 4.1000000000000005
1934
+ - type: recall_at_1
1935
+ value: 0.893
1936
+ - type: recall_at_10
1937
+ value: 6.428000000000001
1938
+ - type: recall_at_100
1939
+ value: 21.662
1940
+ - type: recall_at_1000
1941
+ value: 52.162
1942
+ - type: recall_at_3
1943
+ value: 2.868
1944
+ - type: recall_at_5
1945
+ value: 4.188
1946
+ - task:
1947
+ type: STS
1948
+ dataset:
1949
+ type: mteb/sickr-sts
1950
+ name: MTEB SICK-R
1951
+ config: default
1952
+ split: test
1953
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1954
+ metrics:
1955
+ - type: cos_sim_spearman
1956
+ value: 69.34396953516386
1957
+ - task:
1958
+ type: STS
1959
+ dataset:
1960
+ type: mteb/sts12-sts
1961
+ name: MTEB STS12
1962
+ config: default
1963
+ split: test
1964
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1965
+ metrics:
1966
+ - type: cos_sim_spearman
1967
+ value: 60.094374065360746
1968
+ - task:
1969
+ type: STS
1970
+ dataset:
1971
+ type: mteb/sts13-sts
1972
+ name: MTEB STS13
1973
+ config: default
1974
+ split: test
1975
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1976
+ metrics:
1977
+ - type: cos_sim_spearman
1978
+ value: 72.51503781013379
1979
+ - task:
1980
+ type: STS
1981
+ dataset:
1982
+ type: mteb/sts14-sts
1983
+ name: MTEB STS14
1984
+ config: default
1985
+ split: test
1986
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1987
+ metrics:
1988
+ - type: cos_sim_spearman
1989
+ value: 66.6954698644186
1990
+ - task:
1991
+ type: STS
1992
+ dataset:
1993
+ type: mteb/sts15-sts
1994
+ name: MTEB STS15
1995
+ config: default
1996
+ split: test
1997
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1998
+ metrics:
1999
+ - type: cos_sim_spearman
2000
+ value: 77.69462578028768
2001
+ - task:
2002
+ type: STS
2003
+ dataset:
2004
+ type: mteb/sts16-sts
2005
+ name: MTEB STS16
2006
+ config: default
2007
+ split: test
2008
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2009
+ metrics:
2010
+ - type: cos_sim_spearman
2011
+ value: 75.9397626457859
2012
+ - task:
2013
+ type: STS
2014
+ dataset:
2015
+ type: mteb/sts17-crosslingual-sts
2016
+ name: MTEB STS17 (en-en)
2017
+ config: en-en
2018
+ split: test
2019
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2020
+ metrics:
2021
+ - type: cos_sim_spearman
2022
+ value: 81.67242768943406
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts22-crosslingual-sts
2027
+ name: MTEB STS22 (en)
2028
+ config: en
2029
+ split: test
2030
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2031
+ metrics:
2032
+ - type: cos_sim_spearman
2033
+ value: 63.7027324700292
2034
+ - task:
2035
+ type: STS
2036
+ dataset:
2037
+ type: mteb/stsbenchmark-sts
2038
+ name: MTEB STSBenchmark
2039
+ config: default
2040
+ split: test
2041
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2042
+ metrics:
2043
+ - type: cos_sim_spearman
2044
+ value: 73.36074244064153
2045
+ - task:
2046
+ type: Reranking
2047
+ dataset:
2048
+ type: mteb/scidocs-reranking
2049
+ name: MTEB SciDocsRR
2050
+ config: default
2051
+ split: test
2052
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2053
+ metrics:
2054
+ - type: map
2055
+ value: 67.75984402370518
2056
+ - type: mrr
2057
+ value: 86.9951798383171
2058
+ - task:
2059
+ type: Retrieval
2060
+ dataset:
2061
+ type: scifact
2062
+ name: MTEB SciFact
2063
+ config: default
2064
+ split: test
2065
+ revision: None
2066
+ metrics:
2067
+ - type: map_at_1
2068
+ value: 24.583
2069
+ - type: map_at_10
2070
+ value: 33.125
2071
+ - type: map_at_100
2072
+ value: 34.14
2073
+ - type: map_at_1000
2074
+ value: 34.22
2075
+ - type: map_at_3
2076
+ value: 29.616
2077
+ - type: map_at_5
2078
+ value: 31.896
2079
+ - type: mrr_at_1
2080
+ value: 26.333000000000002
2081
+ - type: mrr_at_10
2082
+ value: 34.437
2083
+ - type: mrr_at_100
2084
+ value: 35.363
2085
+ - type: mrr_at_1000
2086
+ value: 35.433
2087
+ - type: mrr_at_3
2088
+ value: 31.333
2089
+ - type: mrr_at_5
2090
+ value: 33.267
2091
+ - type: ndcg_at_1
2092
+ value: 26.333000000000002
2093
+ - type: ndcg_at_10
2094
+ value: 38.311
2095
+ - type: ndcg_at_100
2096
+ value: 43.923
2097
+ - type: ndcg_at_1000
2098
+ value: 45.923
2099
+ - type: ndcg_at_3
2100
+ value: 31.596000000000004
2101
+ - type: ndcg_at_5
2102
+ value: 35.448
2103
+ - type: precision_at_1
2104
+ value: 26.333000000000002
2105
+ - type: precision_at_10
2106
+ value: 5.933
2107
+ - type: precision_at_100
2108
+ value: 0.91
2109
+ - type: precision_at_1000
2110
+ value: 0.109
2111
+ - type: precision_at_3
2112
+ value: 13.0
2113
+ - type: precision_at_5
2114
+ value: 9.933
2115
+ - type: recall_at_1
2116
+ value: 24.583
2117
+ - type: recall_at_10
2118
+ value: 53.417
2119
+ - type: recall_at_100
2120
+ value: 80.989
2121
+ - type: recall_at_1000
2122
+ value: 96.322
2123
+ - type: recall_at_3
2124
+ value: 35.611
2125
+ - type: recall_at_5
2126
+ value: 44.833
2127
+ - task:
2128
+ type: PairClassification
2129
+ dataset:
2130
+ type: mteb/sprintduplicatequestions-pairclassification
2131
+ name: MTEB SprintDuplicateQuestions
2132
+ config: default
2133
+ split: test
2134
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2135
+ metrics:
2136
+ - type: cos_sim_accuracy
2137
+ value: 99.48514851485149
2138
+ - type: cos_sim_ap
2139
+ value: 77.36426466374054
2140
+ - type: cos_sim_f1
2141
+ value: 72.0702116675271
2142
+ - type: cos_sim_precision
2143
+ value: 74.49306296691569
2144
+ - type: cos_sim_recall
2145
+ value: 69.8
2146
+ - type: dot_accuracy
2147
+ value: 99.15049504950495
2148
+ - type: dot_ap
2149
+ value: 46.792474140260715
2150
+ - type: dot_f1
2151
+ value: 48.76476906552094
2152
+ - type: dot_precision
2153
+ value: 52.66821345707656
2154
+ - type: dot_recall
2155
+ value: 45.4
2156
+ - type: euclidean_accuracy
2157
+ value: 99.46534653465346
2158
+ - type: euclidean_ap
2159
+ value: 74.1978837990589
2160
+ - type: euclidean_f1
2161
+ value: 69.47256259989345
2162
+ - type: euclidean_precision
2163
+ value: 74.34435575826683
2164
+ - type: euclidean_recall
2165
+ value: 65.2
2166
+ - type: manhattan_accuracy
2167
+ value: 99.47128712871287
2168
+ - type: manhattan_ap
2169
+ value: 75.31910551743364
2170
+ - type: manhattan_f1
2171
+ value: 70.1582105837425
2172
+ - type: manhattan_precision
2173
+ value: 77.19087635054022
2174
+ - type: manhattan_recall
2175
+ value: 64.3
2176
+ - type: max_accuracy
2177
+ value: 99.48514851485149
2178
+ - type: max_ap
2179
+ value: 77.36426466374054
2180
+ - type: max_f1
2181
+ value: 72.0702116675271
2182
+ - task:
2183
+ type: Clustering
2184
+ dataset:
2185
+ type: mteb/stackexchange-clustering
2186
+ name: MTEB StackExchangeClustering
2187
+ config: default
2188
+ split: test
2189
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2190
+ metrics:
2191
+ - type: v_measure
2192
+ value: 59.353792480720436
2193
+ - task:
2194
+ type: Clustering
2195
+ dataset:
2196
+ type: mteb/stackexchange-clustering-p2p
2197
+ name: MTEB StackExchangeClusteringP2P
2198
+ config: default
2199
+ split: test
2200
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2201
+ metrics:
2202
+ - type: v_measure
2203
+ value: 31.474896484744836
2204
+ - task:
2205
+ type: Reranking
2206
+ dataset:
2207
+ type: mteb/stackoverflowdupquestions-reranking
2208
+ name: MTEB StackOverflowDupQuestions
2209
+ config: default
2210
+ split: test
2211
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2212
+ metrics:
2213
+ - type: map
2214
+ value: 40.82378653430986
2215
+ - type: mrr
2216
+ value: 41.13905600118835
2217
+ - task:
2218
+ type: Summarization
2219
+ dataset:
2220
+ type: mteb/summeval
2221
+ name: MTEB SummEval
2222
+ config: default
2223
+ split: test
2224
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2225
+ metrics:
2226
+ - type: cos_sim_pearson
2227
+ value: 31.08154836998798
2228
+ - type: cos_sim_spearman
2229
+ value: 31.232033308845907
2230
+ - type: dot_pearson
2231
+ value: 23.767593496465828
2232
+ - type: dot_spearman
2233
+ value: 25.6201612766572
2234
+ - task:
2235
+ type: Retrieval
2236
+ dataset:
2237
+ type: trec-covid
2238
+ name: MTEB TRECCOVID
2239
+ config: default
2240
+ split: test
2241
+ revision: None
2242
+ metrics:
2243
+ - type: map_at_1
2244
+ value: 0.186
2245
+ - type: map_at_10
2246
+ value: 1.1809999999999998
2247
+ - type: map_at_100
2248
+ value: 5.21
2249
+ - type: map_at_1000
2250
+ value: 12.447999999999999
2251
+ - type: map_at_3
2252
+ value: 0.44200000000000006
2253
+ - type: map_at_5
2254
+ value: 0.673
2255
+ - type: mrr_at_1
2256
+ value: 72.0
2257
+ - type: mrr_at_10
2258
+ value: 80.01899999999999
2259
+ - type: mrr_at_100
2260
+ value: 80.42099999999999
2261
+ - type: mrr_at_1000
2262
+ value: 80.42099999999999
2263
+ - type: mrr_at_3
2264
+ value: 78.0
2265
+ - type: mrr_at_5
2266
+ value: 79.4
2267
+ - type: ndcg_at_1
2268
+ value: 66.0
2269
+ - type: ndcg_at_10
2270
+ value: 56.041
2271
+ - type: ndcg_at_100
2272
+ value: 37.987
2273
+ - type: ndcg_at_1000
2274
+ value: 34.198
2275
+ - type: ndcg_at_3
2276
+ value: 60.23500000000001
2277
+ - type: ndcg_at_5
2278
+ value: 58.025999999999996
2279
+ - type: precision_at_1
2280
+ value: 72.0
2281
+ - type: precision_at_10
2282
+ value: 60.4
2283
+ - type: precision_at_100
2284
+ value: 38.940000000000005
2285
+ - type: precision_at_1000
2286
+ value: 16.106
2287
+ - type: precision_at_3
2288
+ value: 63.333
2289
+ - type: precision_at_5
2290
+ value: 61.6
2291
+ - type: recall_at_1
2292
+ value: 0.186
2293
+ - type: recall_at_10
2294
+ value: 1.458
2295
+ - type: recall_at_100
2296
+ value: 8.455
2297
+ - type: recall_at_1000
2298
+ value: 33.141999999999996
2299
+ - type: recall_at_3
2300
+ value: 0.461
2301
+ - type: recall_at_5
2302
+ value: 0.756
2303
+ - task:
2304
+ type: Retrieval
2305
+ dataset:
2306
+ type: webis-touche2020
2307
+ name: MTEB Touche2020
2308
+ config: default
2309
+ split: test
2310
+ revision: None
2311
+ metrics:
2312
+ - type: map_at_1
2313
+ value: 2.2849999999999997
2314
+ - type: map_at_10
2315
+ value: 6.909
2316
+ - type: map_at_100
2317
+ value: 11.231
2318
+ - type: map_at_1000
2319
+ value: 12.472
2320
+ - type: map_at_3
2321
+ value: 3.53
2322
+ - type: map_at_5
2323
+ value: 4.675
2324
+ - type: mrr_at_1
2325
+ value: 26.531
2326
+ - type: mrr_at_10
2327
+ value: 40.73
2328
+ - type: mrr_at_100
2329
+ value: 41.637
2330
+ - type: mrr_at_1000
2331
+ value: 41.647
2332
+ - type: mrr_at_3
2333
+ value: 34.354
2334
+ - type: mrr_at_5
2335
+ value: 38.741
2336
+ - type: ndcg_at_1
2337
+ value: 24.490000000000002
2338
+ - type: ndcg_at_10
2339
+ value: 19.17
2340
+ - type: ndcg_at_100
2341
+ value: 29.946
2342
+ - type: ndcg_at_1000
2343
+ value: 40.842
2344
+ - type: ndcg_at_3
2345
+ value: 19.088
2346
+ - type: ndcg_at_5
2347
+ value: 19.445999999999998
2348
+ - type: precision_at_1
2349
+ value: 26.531
2350
+ - type: precision_at_10
2351
+ value: 17.959
2352
+ - type: precision_at_100
2353
+ value: 6.468999999999999
2354
+ - type: precision_at_1000
2355
+ value: 1.351
2356
+ - type: precision_at_3
2357
+ value: 19.048000000000002
2358
+ - type: precision_at_5
2359
+ value: 19.592000000000002
2360
+ - type: recall_at_1
2361
+ value: 2.2849999999999997
2362
+ - type: recall_at_10
2363
+ value: 12.973
2364
+ - type: recall_at_100
2365
+ value: 40.239999999999995
2366
+ - type: recall_at_1000
2367
+ value: 73.247
2368
+ - type: recall_at_3
2369
+ value: 4.407
2370
+ - type: recall_at_5
2371
+ value: 6.908
2372
+ - task:
2373
+ type: Classification
2374
+ dataset:
2375
+ type: mteb/toxic_conversations_50k
2376
+ name: MTEB ToxicConversationsClassification
2377
+ config: default
2378
+ split: test
2379
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2380
+ metrics:
2381
+ - type: accuracy
2382
+ value: 68.405
2383
+ - type: ap
2384
+ value: 13.9913678628558
2385
+ - type: f1
2386
+ value: 53.209691917560285
2387
+ - task:
2388
+ type: Classification
2389
+ dataset:
2390
+ type: mteb/tweet_sentiment_extraction
2391
+ name: MTEB TweetSentimentExtractionClassification
2392
+ config: default
2393
+ split: test
2394
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2395
+ metrics:
2396
+ - type: accuracy
2397
+ value: 56.080928126768534
2398
+ - type: f1
2399
+ value: 56.36329965117965
2400
+ - task:
2401
+ type: Clustering
2402
+ dataset:
2403
+ type: mteb/twentynewsgroups-clustering
2404
+ name: MTEB TwentyNewsgroupsClustering
2405
+ config: default
2406
+ split: test
2407
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2408
+ metrics:
2409
+ - type: v_measure
2410
+ value: 31.540976715818065
2411
+ - task:
2412
+ type: PairClassification
2413
+ dataset:
2414
+ type: mteb/twittersemeval2015-pairclassification
2415
+ name: MTEB TwitterSemEval2015
2416
+ config: default
2417
+ split: test
2418
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2419
+ metrics:
2420
+ - type: cos_sim_accuracy
2421
+ value: 82.90516778923526
2422
+ - type: cos_sim_ap
2423
+ value: 61.5394989621502
2424
+ - type: cos_sim_f1
2425
+ value: 58.02297689685646
2426
+ - type: cos_sim_precision
2427
+ value: 55.62817719680465
2428
+ - type: cos_sim_recall
2429
+ value: 60.633245382585756
2430
+ - type: dot_accuracy
2431
+ value: 78.95928950348691
2432
+ - type: dot_ap
2433
+ value: 48.61088896690895
2434
+ - type: dot_f1
2435
+ value: 51.0104674059488
2436
+ - type: dot_precision
2437
+ value: 42.00375490698071
2438
+ - type: dot_recall
2439
+ value: 64.93403693931398
2440
+ - type: euclidean_accuracy
2441
+ value: 82.476008821601
2442
+ - type: euclidean_ap
2443
+ value: 59.59406971314053
2444
+ - type: euclidean_f1
2445
+ value: 56.424962447084525
2446
+ - type: euclidean_precision
2447
+ value: 58.47721483158789
2448
+ - type: euclidean_recall
2449
+ value: 54.51187335092348
2450
+ - type: manhattan_accuracy
2451
+ value: 82.66078559933241
2452
+ - type: manhattan_ap
2453
+ value: 60.414321716856925
2454
+ - type: manhattan_f1
2455
+ value: 56.88221089348002
2456
+ - type: manhattan_precision
2457
+ value: 57.86026200873362
2458
+ - type: manhattan_recall
2459
+ value: 55.93667546174142
2460
+ - type: max_accuracy
2461
+ value: 82.90516778923526
2462
+ - type: max_ap
2463
+ value: 61.5394989621502
2464
+ - type: max_f1
2465
+ value: 58.02297689685646
2466
+ - task:
2467
+ type: PairClassification
2468
+ dataset:
2469
+ type: mteb/twitterurlcorpus-pairclassification
2470
+ name: MTEB TwitterURLCorpus
2471
+ config: default
2472
+ split: test
2473
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2474
+ metrics:
2475
+ - type: cos_sim_accuracy
2476
+ value: 85.71622618077386
2477
+ - type: cos_sim_ap
2478
+ value: 77.72774861009667
2479
+ - type: cos_sim_f1
2480
+ value: 71.40275165062152
2481
+ - type: cos_sim_precision
2482
+ value: 68.53359767754726
2483
+ - type: cos_sim_recall
2484
+ value: 74.52263627964275
2485
+ - type: dot_accuracy
2486
+ value: 83.97174680793262
2487
+ - type: dot_ap
2488
+ value: 72.89480417427734
2489
+ - type: dot_f1
2490
+ value: 68.57803792366198
2491
+ - type: dot_precision
2492
+ value: 62.94151708164447
2493
+ - type: dot_recall
2494
+ value: 75.32337542346782
2495
+ - type: euclidean_accuracy
2496
+ value: 84.88570652384834
2497
+ - type: euclidean_ap
2498
+ value: 75.78371710915128
2499
+ - type: euclidean_f1
2500
+ value: 69.44268877569989
2501
+ - type: euclidean_precision
2502
+ value: 67.1435761018046
2503
+ - type: euclidean_recall
2504
+ value: 71.90483523252233
2505
+ - type: manhattan_accuracy
2506
+ value: 85.6114409904141
2507
+ - type: manhattan_ap
2508
+ value: 77.38579436755944
2509
+ - type: manhattan_f1
2510
+ value: 70.8608538430316
2511
+ - type: manhattan_precision
2512
+ value: 68.03656203500319
2513
+ - type: manhattan_recall
2514
+ value: 73.92978133661842
2515
+ - type: max_accuracy
2516
+ value: 85.71622618077386
2517
+ - type: max_ap
2518
+ value: 77.72774861009667
2519
+ - type: max_f1
2520
+ value: 71.40275165062152
2521
  ---
2522
 
2523
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders