--- base_model: - Qwen/Qwen3-14B-Base datasets: - MegaScience/MegaScience language: - en license: apache-2.0 metrics: - accuracy pipeline_tag: text-generation library_name: transformers --- # [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812) This repository contains the **Qwen3-14B-MegaScience** model, a large language model fine-tuned on the MegaScience dataset for enhanced scientific reasoning. **Project Link**: [https://huggingface.co/MegaScience](https://huggingface.co/MegaScience) (Hugging Face Organization for MegaScience project) **Code Repository**: [https://github.com/GAIR-NLP/lm-open-science-evaluation](https://github.com/GAIR-NLP/lm-open-science-evaluation) ## Usage You can use this model with the `transformers` library for text generation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "MegaScience/Qwen3-14B-MegaScience" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, # or torch.float16 if bfloat16 is not supported device_map="auto" ) messages = [ {"role": "system", "content": "You are a helpful and knowledgeable assistant."}, {"role": "user", "content": "Explain the concept of quantum entanglement in simple terms."} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer(text, return_tensors="pt").to(model.device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.9, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=True) print(response) ``` ## Qwen3-14B-MegaScience ### Training Recipe - **LR**: 5e-6 - **LR Schedule**: Cosine - **Batch Size**: 512 - **Max Length**: 4,096 - **Warm Up Ratio**: 0.05 - **Epochs**: 3 ### Evaluation Results