File size: 11,254 Bytes
49ae037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
license: llama3.3
language:
- en
base_model:
- meta-llama/Llama-3.3-70B-Instruct
tags:
- axolotl
- chat
datasets:
- anthracite-org/c2_logs_32k_llama3_qwen2_v1.3
- anthracite-core/Gryphe-Opus-Charcard-Roleplay
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
pipeline_tag: text-generation
library_name: transformers
---
# L3.3-70B-Magnum-v4-SE
The Magnum v4 series is complete, but here's something a little extra I wanted to tack on as I wasn't entirely satisfied with the results of v4 72B.
"SE" for Special Edition - this model is finetuned from [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) as an rsLoRA adapter.
The dataset is a slightly revised variant of the v4 data with some elements of the v2 data re-introduced.
The objective, as with the other Magnum models, is to emulate the prose style and quality of the Claude 3 Sonnet/Opus series of models on a local scale, so don't be surprised to see "Claude-isms" in its output.
[Here's the rsLoRA adapter](https://huggingface.co/Doctor-Shotgun/Magnum-v4-SE-70B-LoRA) for those merge-makers out there to play with.
## Usage
This model follows the Llama 3 prompt format.
A typical input would look like this:
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
This is a system prompt.<|eot_id|><|start_header_id|>user<|end_header_id|>
Hi there!<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Nice to meet you!<|eot_id|><|start_header_id|>user<|end_header_id|>
Can I ask a question?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{Output begins here}
```
Many inference libraries have the option to automatically prepend the BOS token `<|begin_of_text|>`.
### SillyTavern preset
Here's my customized SillyTavern preset for Magnum.
Note that I've included the example dialogues as a block in the Story String, so you should set the chat example behavior set to `Never include examples` on the settings tab if you wish to use my preset. Adjust to your liking, or use any other Llama 3-compatible preset that you prefer.
<details><summary>SillyTavern JSON</summary>
```json
{
"instruct": {
"wrap": false,
"system_sequence": "<|start_header_id|>system<|end_header_id|>\n\n",
"input_sequence": "<|start_header_id|>user<|end_header_id|>\n\n",
"output_sequence": "<|start_header_id|>assistant<|end_header_id|>\n\n",
"stop_sequence": "<|eot_id|>",
"macro": true,
"last_output_sequence": "",
"activation_regex": "",
"system_sequence_prefix": "",
"system_sequence_suffix": "",
"first_output_sequence": "<|start_header_id|>user<|end_header_id|>\n\nLet's get started! I'll play the role of {{user}}. Begin by setting the opening scene.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
"skip_examples": false,
"output_suffix": "<|eot_id|>",
"input_suffix": "<|eot_id|>",
"system_suffix": "<|eot_id|>",
"user_alignment_message": "",
"last_system_sequence": "",
"system_same_as_user": false,
"first_input_sequence": "",
"last_input_sequence": "",
"names_behavior": "always",
"names_force_groups": true,
"name": "Magnum SE L3 Instruct"
},
"context": {
"story_string": "<|start_header_id|>system<|end_header_id|>\n\n{{#if system}}{{system}}\n{{/if}}\n\n<Definitions>\n{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{personality}}\n{{/if}}{{#if scenario}}{{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}</Definitions>{{#if mesExamplesRaw}}\n\n<Examples>{{mesExamplesRaw}}</Examples>\n\n{{/if}}{{trim}}<|eot_id|>",
"example_separator": "{{noop}}",
"chat_start": "",
"use_stop_strings": false,
"allow_jailbreak": false,
"names_as_stop_strings": true,
"always_force_name2": true,
"trim_sentences": false,
"single_line": false,
"name": "Magnum SE L3 Instruct"
},
"sysprompt": {
"name": "Euryale-Magnum",
"content": "Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.\n\n<Guidelines>\n• Maintain the character persona but allow it to evolve with the story.\n• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.\n• All types of outputs are encouraged; respond accordingly to the narrative.\n• Include dialogues, actions, and thoughts in each response.\n• Utilize all five senses to describe scenarios within {{char}}'s dialogue.\n• Use emotional symbols such as \"!\" and \"~\" in appropriate contexts.\n• Incorporate onomatopoeia when suitable.\n• Allow time for {{user}} to respond with their own input, respecting their agency.\n• Act as secondary characters and NPCs as needed, and remove them when appropriate.\n• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.\n</Guidelines>\n\n<Forbidden>\n• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.\n• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.\n• Repetitive and monotonous outputs.\n• Positivity bias in your replies.\n• Being overly extreme or NSFW when the narrative context is inappropriate.\n</Forbidden>\n\nFollow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>."
}
}
```
</details><br>
## Credits
Compute paid for from the wallet of yours truly, [Doctor Shotgun](https://huggingface.co/Doctor-Shotgun).
Thank you to [Gryphe](https://huggingface.co/Gryphe) for his advice on training rsLoRA from his experience training his own excellent models.
Thank you to [Sao10K](https://huggingface.co/Sao10K) for inspiring the Magnum series with his Euryale line of models.
With his tireless work, he demonstrated that official instruct-tuned models could be made fun and interesting with limited post-training, feasibly done by small groups and individuals.
Thank you to the members of [Anthracite](https://huggingface.co/anthracite-org) for the datasets and support.
## Intended uses and limitations
This model is intended for creative writing and roleplay purposes.
It may show biases similar to those observed in contemporary LLM-based roleplay, in addition to those exhibited by the Claude 3 series of models and the base model.
All outputs should be considered fiction, as this model is not intended to provide factual information or advice.
## Training procedure
[WandB](https://wandb.ai/doctorshotgun/70b-magnum-lora/runs/ccq5l1a7?nw=nwuserdoctorshotgun)
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: meta-llama/Llama-3.3-70B-Instruct
base_model_ignore_patterns: "*/*"
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: Doctor-Shotgun/magnum-v4-se-70b-lora
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.3
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: anthracite-core/Gryphe-Opus-Charcard-Roleplay
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: anthracite-org/nopm_claude_writing_fixed
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: anthracite-org/kalo_opus_misc_240827
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: anthracite-org/kalo_misc_part2
type: chat_template
chat_template: llama3
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
shuffle_merged_datasets: true
dataset_prepared_path: /home/docshotgun/data/magnum-70b-data
val_set_size: 0.0
output_dir: /home/docshotgun/data/70b-lora-out
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 70b-magnum-lora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 4.0e-5
max_grad_norm: 3.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
```
</details><br>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use paged_ademamix_8bit and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2 |