add docs
Browse files- function_call_guide.md +270 -0
- function_call_guide_cn.md +267 -0
- transformers_deployment_guide.md +97 -0
- transformers_deployment_guide_cn.md +95 -0
- vllm_deployment_guide.md +166 -0
- vllm_deployment_guide_cn.md +161 -0
function_call_guide.md
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MiniMax-M1 Function Call Guide
|
| 2 |
+
|
| 3 |
+
[FunctionCall中文使用指南](./function_call_guide_cn.md)
|
| 4 |
+
|
| 5 |
+
## 📖 Introduction
|
| 6 |
+
|
| 7 |
+
The MiniMax-M1 model supports function calling capabilities, enabling the model to identify when external functions need to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-M1.
|
| 8 |
+
|
| 9 |
+
## 🚀 Quick Start
|
| 10 |
+
|
| 11 |
+
### Using Chat Template
|
| 12 |
+
|
| 13 |
+
MiniMax-M1 uses a specific chat template format to handle function calls. The chat template is defined in `tokenizer_config.json`, and you can use it in your code through the template.
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
from transformers import AutoTokenizer
|
| 17 |
+
|
| 18 |
+
def get_default_tools():
|
| 19 |
+
return [
|
| 20 |
+
{
|
| 21 |
+
{
|
| 22 |
+
"name": "get_current_weather",
|
| 23 |
+
"description": "Get the latest weather for a location",
|
| 24 |
+
"parameters": {
|
| 25 |
+
"type": "object",
|
| 26 |
+
"properties": {
|
| 27 |
+
"location": {
|
| 28 |
+
"type": "string",
|
| 29 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 30 |
+
}
|
| 31 |
+
},
|
| 32 |
+
}
|
| 33 |
+
"required": ["location"],
|
| 34 |
+
"type": "object"
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
# Load model and tokenizer
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 41 |
+
prompt = "What's the weather like in Shanghai today?"
|
| 42 |
+
messages = [
|
| 43 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
|
| 44 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
# Enable function call tools
|
| 48 |
+
tools = get_default_tools()
|
| 49 |
+
|
| 50 |
+
# Apply chat template and add tool definitions
|
| 51 |
+
text = tokenizer.apply_chat_template(
|
| 52 |
+
messages,
|
| 53 |
+
tokenize=False,
|
| 54 |
+
add_generation_prompt=True,
|
| 55 |
+
tools=tools
|
| 56 |
+
)
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
## 🛠️ Function Call Definition
|
| 60 |
+
|
| 61 |
+
### Function Structure
|
| 62 |
+
|
| 63 |
+
Function calls need to be defined in the `tools` field of the request body. Each function consists of the following components:
|
| 64 |
+
|
| 65 |
+
```json
|
| 66 |
+
{
|
| 67 |
+
"tools": [
|
| 68 |
+
{
|
| 69 |
+
"name": "search_web",
|
| 70 |
+
"description": "Search function.",
|
| 71 |
+
"parameters": {
|
| 72 |
+
"properties": {
|
| 73 |
+
"query_list": {
|
| 74 |
+
"description": "Keywords for search, with list element count of 1.",
|
| 75 |
+
"items": { "type": "string" },
|
| 76 |
+
"type": "array"
|
| 77 |
+
},
|
| 78 |
+
"query_tag": {
|
| 79 |
+
"description": "Classification of the query",
|
| 80 |
+
"items": { "type": "string" },
|
| 81 |
+
"type": "array"
|
| 82 |
+
}
|
| 83 |
+
},
|
| 84 |
+
"required": [ "query_list", "query_tag" ],
|
| 85 |
+
"type": "object"
|
| 86 |
+
}
|
| 87 |
+
}
|
| 88 |
+
]
|
| 89 |
+
}
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
**Field Descriptions:**
|
| 93 |
+
- `name`: Function name
|
| 94 |
+
- `description`: Function description
|
| 95 |
+
- `parameters`: Function parameter definition
|
| 96 |
+
- `properties`: Parameter property definitions, where key is the parameter name and value contains detailed parameter description
|
| 97 |
+
- `required`: List of required parameters
|
| 98 |
+
- `type`: Parameter type (usually "object")
|
| 99 |
+
|
| 100 |
+
### Internal Model Processing Format
|
| 101 |
+
|
| 102 |
+
When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
|
| 103 |
+
|
| 104 |
+
```
|
| 105 |
+
]~!b[]~b]system ai_setting=Conch AI
|
| 106 |
+
MiniMax AI is an AI assistant independently developed by MiniMax. [e~[
|
| 107 |
+
]~b]system tool_setting=tools
|
| 108 |
+
You are provided with these tools:
|
| 109 |
+
<tools>
|
| 110 |
+
{"name": "search_web", "description": "Search function.", "parameters": {"properties": {"query_list": {"description": "Keywords for search, with list element count of 1.", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "Classification of the query", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
| 111 |
+
</tools>
|
| 112 |
+
|
| 113 |
+
If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
|
| 114 |
+
<tool_calls>
|
| 115 |
+
{"name": <tool-name>, "arguments": <args-json-object>}
|
| 116 |
+
...
|
| 117 |
+
</tool_calls>[e~[
|
| 118 |
+
]~b]user name=User
|
| 119 |
+
When were the most recent launch events for OpenAI and Gemini?[e~[
|
| 120 |
+
]~b]ai name=Conch AI
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
### Model Output Format
|
| 124 |
+
|
| 125 |
+
The model outputs function calls in the following format:
|
| 126 |
+
|
| 127 |
+
```xml
|
| 128 |
+
<think>
|
| 129 |
+
Okay, I will search for the OpenAI and Gemini latest release.
|
| 130 |
+
</think>
|
| 131 |
+
<tool_calls>
|
| 132 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
|
| 133 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
|
| 134 |
+
</tool_calls>
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
## 📥 Function Call Result Processing
|
| 138 |
+
|
| 139 |
+
### Parsing Function Calls
|
| 140 |
+
|
| 141 |
+
You can use the following code to parse function calls from the model output:
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
import re
|
| 145 |
+
import json
|
| 146 |
+
|
| 147 |
+
def parse_function_calls(content: str):
|
| 148 |
+
"""
|
| 149 |
+
Parse function calls from model output
|
| 150 |
+
"""
|
| 151 |
+
function_calls = []
|
| 152 |
+
|
| 153 |
+
# Match content within <tool_calls> tags
|
| 154 |
+
tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
|
| 155 |
+
tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
|
| 156 |
+
|
| 157 |
+
if not tool_calls_match:
|
| 158 |
+
return function_calls
|
| 159 |
+
|
| 160 |
+
tool_calls_content = tool_calls_match.group(1).strip()
|
| 161 |
+
|
| 162 |
+
# Parse each function call (one JSON object per line)
|
| 163 |
+
for line in tool_calls_content.split('\n'):
|
| 164 |
+
line = line.strip()
|
| 165 |
+
if not line:
|
| 166 |
+
continue
|
| 167 |
+
|
| 168 |
+
try:
|
| 169 |
+
# Parse JSON format function call
|
| 170 |
+
call_data = json.loads(line)
|
| 171 |
+
function_name = call_data.get("name")
|
| 172 |
+
arguments = call_data.get("arguments", {})
|
| 173 |
+
|
| 174 |
+
function_calls.append({
|
| 175 |
+
"name": function_name,
|
| 176 |
+
"arguments": arguments
|
| 177 |
+
})
|
| 178 |
+
|
| 179 |
+
print(f"Function call: {function_name}, Arguments: {arguments}")
|
| 180 |
+
|
| 181 |
+
except json.JSONDecodeError as e:
|
| 182 |
+
print(f"Parameter parsing failed: {line}, Error: {e}")
|
| 183 |
+
|
| 184 |
+
return function_calls
|
| 185 |
+
|
| 186 |
+
# Example: Handle weather query function
|
| 187 |
+
def execute_function_call(function_name: str, arguments: dict):
|
| 188 |
+
"""
|
| 189 |
+
Execute function call and return result
|
| 190 |
+
"""
|
| 191 |
+
if function_name == "get_current_weather":
|
| 192 |
+
location = arguments.get("location", "Unknown location")
|
| 193 |
+
# Build function execution result
|
| 194 |
+
return {
|
| 195 |
+
"role": "tool",
|
| 196 |
+
"name": function_name,
|
| 197 |
+
"content": json.dumps({
|
| 198 |
+
"location": location,
|
| 199 |
+
"temperature": "25",
|
| 200 |
+
"unit": "celsius",
|
| 201 |
+
"weather": "Sunny"
|
| 202 |
+
}, ensure_ascii=False)
|
| 203 |
+
}
|
| 204 |
+
elif function_name == "search_web":
|
| 205 |
+
query_list = arguments.get("query_list", [])
|
| 206 |
+
query_tag = arguments.get("query_tag", [])
|
| 207 |
+
# Simulate search results
|
| 208 |
+
return {
|
| 209 |
+
"role": "tool",
|
| 210 |
+
"name": function_name,
|
| 211 |
+
"content": f"Search keywords: {query_list}, Categories: {query_tag}\nSearch results: Relevant information found"
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
return None
|
| 215 |
+
```
|
| 216 |
+
|
| 217 |
+
### Returning Function Execution Results to the Model
|
| 218 |
+
|
| 219 |
+
After successfully parsing function calls, you should add the function execution results to the conversation history so that the model can access and utilize this information in subsequent interactions.
|
| 220 |
+
|
| 221 |
+
#### Single Result
|
| 222 |
+
|
| 223 |
+
If the model decides to call `search_web`, we suggest you to return the function result in the following format, with the `name` field set to the specific tool name.
|
| 224 |
+
|
| 225 |
+
```json
|
| 226 |
+
{
|
| 227 |
+
"data": [
|
| 228 |
+
{
|
| 229 |
+
"role": "tool",
|
| 230 |
+
"name": "search_web",
|
| 231 |
+
"content": "search_result"
|
| 232 |
+
}
|
| 233 |
+
]
|
| 234 |
+
}
|
| 235 |
+
```
|
| 236 |
+
|
| 237 |
+
Corresponding model input format:
|
| 238 |
+
```
|
| 239 |
+
]~b]tool name=search_web
|
| 240 |
+
search_result[e~[
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
#### Multiple Result
|
| 245 |
+
If the model decides to call `search_web` and `get_current_weather` at the same time, we suggest you to return the multiple function results in the following format, with the `name` field set to "tools", and use the `content` field to contain multiple results.
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
```json
|
| 249 |
+
{
|
| 250 |
+
"data": [
|
| 251 |
+
{
|
| 252 |
+
"role": "tool",
|
| 253 |
+
"name": "tools",
|
| 254 |
+
"content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
|
| 255 |
+
}
|
| 256 |
+
]
|
| 257 |
+
}
|
| 258 |
+
```
|
| 259 |
+
|
| 260 |
+
Corresponding model input format:
|
| 261 |
+
```
|
| 262 |
+
]~b]tool name=tools
|
| 263 |
+
Tool name: search_web
|
| 264 |
+
Tool result: test_result1
|
| 265 |
+
|
| 266 |
+
Tool name: search_web
|
| 267 |
+
Tool result: test_result2[e~[
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
While we suggest following the above formats, as long as the model input is easy to understand, the specific values of `name` and `content` is entirely up to the caller.
|
function_call_guide_cn.md
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MiniMax-M1 函数调用(Function Call)功能指南
|
| 2 |
+
|
| 3 |
+
## 📖 简介
|
| 4 |
+
|
| 5 |
+
MiniMax-M1 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-M1 的函数调用功能。
|
| 6 |
+
|
| 7 |
+
## 🚀 快速开始
|
| 8 |
+
|
| 9 |
+
### 聊天模板使用
|
| 10 |
+
|
| 11 |
+
MiniMax-M1 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中,你可以在代码中通过 template 来进行使用。
|
| 12 |
+
|
| 13 |
+
```python
|
| 14 |
+
from transformers import AutoTokenizer
|
| 15 |
+
|
| 16 |
+
def get_default_tools():
|
| 17 |
+
return [
|
| 18 |
+
{
|
| 19 |
+
{
|
| 20 |
+
"name": "get_current_weather",
|
| 21 |
+
"description": "Get the latest weather for a location",
|
| 22 |
+
"parameters": {
|
| 23 |
+
"type": "object",
|
| 24 |
+
"properties": {
|
| 25 |
+
"location": {
|
| 26 |
+
"type": "string",
|
| 27 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
}
|
| 31 |
+
"required": ["location"],
|
| 32 |
+
"type": "object"
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
# 加载模型和分词器
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 39 |
+
prompt = "What's the weather like in Shanghai today?"
|
| 40 |
+
messages = [
|
| 41 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
|
| 42 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
# 启用函数调用工具
|
| 46 |
+
tools = get_default_tools()
|
| 47 |
+
|
| 48 |
+
# 应用聊天模板,并加入工具定义
|
| 49 |
+
text = tokenizer.apply_chat_template(
|
| 50 |
+
messages,
|
| 51 |
+
tokenize=False,
|
| 52 |
+
add_generation_prompt=True,
|
| 53 |
+
tools=tools
|
| 54 |
+
)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## 🛠️ 函数调用的定义
|
| 58 |
+
|
| 59 |
+
### 函数结构体
|
| 60 |
+
|
| 61 |
+
函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成:
|
| 62 |
+
|
| 63 |
+
```json
|
| 64 |
+
{
|
| 65 |
+
"tools": [
|
| 66 |
+
{
|
| 67 |
+
"name": "search_web",
|
| 68 |
+
"description": "搜索函数。",
|
| 69 |
+
"parameters": {
|
| 70 |
+
"properties": {
|
| 71 |
+
"query_list": {
|
| 72 |
+
"description": "进行搜索的关键词,列表元素个数为1。",
|
| 73 |
+
"items": { "type": "string" },
|
| 74 |
+
"type": "array"
|
| 75 |
+
},
|
| 76 |
+
"query_tag": {
|
| 77 |
+
"description": "query的分类",
|
| 78 |
+
"items": { "type": "string" },
|
| 79 |
+
"type": "array"
|
| 80 |
+
}
|
| 81 |
+
},
|
| 82 |
+
"required": [ "query_list", "query_tag" ],
|
| 83 |
+
"type": "object"
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
]
|
| 87 |
+
}
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
**字段说明:**
|
| 91 |
+
- `name`: 函数名称
|
| 92 |
+
- `description`: 函数功能描述
|
| 93 |
+
- `parameters`: 函数参数定义
|
| 94 |
+
- `properties`: 参数属性定义,key 是参数名,value 包含参数的详细描述
|
| 95 |
+
- `required`: 必填参数列表
|
| 96 |
+
- `type`: 参数类型(通常为 "object")
|
| 97 |
+
|
| 98 |
+
### 模型内部处理格式
|
| 99 |
+
|
| 100 |
+
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
|
| 101 |
+
|
| 102 |
+
```
|
| 103 |
+
]~!b[]~b]system ai_setting=海螺AI
|
| 104 |
+
MiniMax AI是由上海稀宇科技有限公司(MiniMax)自主研发的AI助理。[e~[
|
| 105 |
+
]~b]system tool_setting=tools
|
| 106 |
+
You are provided with these tools:
|
| 107 |
+
<tools>
|
| 108 |
+
{"name": "search_web", "description": "搜索函数。", "parameters": {"properties": {"query_list": {"description": "进行搜索的关键词,列表元素个数为1。", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "query的分类", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
| 109 |
+
</tools>
|
| 110 |
+
|
| 111 |
+
If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
|
| 112 |
+
<tool_calls>
|
| 113 |
+
{"name": <tool-name>, "arguments": <args-json-object>}
|
| 114 |
+
...
|
| 115 |
+
</tool_calls>[e~[
|
| 116 |
+
]~b]user name=用户
|
| 117 |
+
OpenAI 和 Gemini 的最近一次发布会都是什么时候?[e~[
|
| 118 |
+
]~b]ai name=海螺AI
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
### 模型输出格式
|
| 122 |
+
|
| 123 |
+
模型会以以下格式输出函数调用:
|
| 124 |
+
|
| 125 |
+
```xml
|
| 126 |
+
<think>
|
| 127 |
+
Okay, I will search for the OpenAI and Gemini latest release.
|
| 128 |
+
</think>
|
| 129 |
+
<tool_calls>
|
| 130 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
|
| 131 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
|
| 132 |
+
</tool_calls>
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## 📥 函数调用结果处理
|
| 136 |
+
|
| 137 |
+
### 解析函数调用
|
| 138 |
+
|
| 139 |
+
您可以使用以下代码解析模型输出的函数调用:
|
| 140 |
+
|
| 141 |
+
```python
|
| 142 |
+
import re
|
| 143 |
+
import json
|
| 144 |
+
|
| 145 |
+
def parse_function_calls(content: str):
|
| 146 |
+
"""
|
| 147 |
+
解析模型输出中的函数调用
|
| 148 |
+
"""
|
| 149 |
+
function_calls = []
|
| 150 |
+
|
| 151 |
+
# 匹配 <tool_calls> 标签内的内容
|
| 152 |
+
tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
|
| 153 |
+
tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
|
| 154 |
+
|
| 155 |
+
if not tool_calls_match:
|
| 156 |
+
return function_calls
|
| 157 |
+
|
| 158 |
+
tool_calls_content = tool_calls_match.group(1).strip()
|
| 159 |
+
|
| 160 |
+
# 解析每个函数调用(每行一��JSON对象)
|
| 161 |
+
for line in tool_calls_content.split('\n'):
|
| 162 |
+
line = line.strip()
|
| 163 |
+
if not line:
|
| 164 |
+
continue
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
# 解析JSON格式的函数调用
|
| 168 |
+
call_data = json.loads(line)
|
| 169 |
+
function_name = call_data.get("name")
|
| 170 |
+
arguments = call_data.get("arguments", {})
|
| 171 |
+
|
| 172 |
+
function_calls.append({
|
| 173 |
+
"name": function_name,
|
| 174 |
+
"arguments": arguments
|
| 175 |
+
})
|
| 176 |
+
|
| 177 |
+
print(f"调用函数: {function_name}, 参数: {arguments}")
|
| 178 |
+
|
| 179 |
+
except json.JSONDecodeError as e:
|
| 180 |
+
print(f"参数解析失败: {line}, 错误: {e}")
|
| 181 |
+
|
| 182 |
+
return function_calls
|
| 183 |
+
|
| 184 |
+
# 示例:处理天气查询函数
|
| 185 |
+
def execute_function_call(function_name: str, arguments: dict):
|
| 186 |
+
"""
|
| 187 |
+
执行函数调用并返回结果
|
| 188 |
+
"""
|
| 189 |
+
if function_name == "get_current_weather":
|
| 190 |
+
location = arguments.get("location", "未知位置")
|
| 191 |
+
# 构建函数执行结果
|
| 192 |
+
return {
|
| 193 |
+
"role": "tool",
|
| 194 |
+
"name": function_name,
|
| 195 |
+
"content": json.dumps({
|
| 196 |
+
"location": location,
|
| 197 |
+
"temperature": "25",
|
| 198 |
+
"unit": "celsius",
|
| 199 |
+
"weather": "晴朗"
|
| 200 |
+
}, ensure_ascii=False)
|
| 201 |
+
}
|
| 202 |
+
elif function_name == "search_web":
|
| 203 |
+
query_list = arguments.get("query_list", [])
|
| 204 |
+
query_tag = arguments.get("query_tag", [])
|
| 205 |
+
# 模拟搜索结果
|
| 206 |
+
return {
|
| 207 |
+
"role": "tool",
|
| 208 |
+
"name": function_name,
|
| 209 |
+
"content": f"搜索关键词: {query_list}, 分类: {query_tag}\n搜索结果: 相关信息已找到"
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
return None
|
| 213 |
+
```
|
| 214 |
+
|
| 215 |
+
### 将函数执行结果返回给模型
|
| 216 |
+
|
| 217 |
+
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
|
| 218 |
+
|
| 219 |
+
#### 单个结果
|
| 220 |
+
|
| 221 |
+
假如模型调用了 `search_web` 函数,您可以参考如下格式添加执行结果,`name` 字段为具体的函数名称。
|
| 222 |
+
|
| 223 |
+
```json
|
| 224 |
+
{
|
| 225 |
+
"data": [
|
| 226 |
+
{
|
| 227 |
+
"role": "tool",
|
| 228 |
+
"name": "search_web",
|
| 229 |
+
"content": "search_result"
|
| 230 |
+
}
|
| 231 |
+
]
|
| 232 |
+
}
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
对应如下的模型输入格式:
|
| 236 |
+
```
|
| 237 |
+
]~b]tool name=search_web
|
| 238 |
+
search_result[e~[
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
#### 多个结果
|
| 243 |
+
假如模型同时调用了 `search_web` 和 `get_current_weather` 函数,您可以参考如下格式添加执行结果,`name` 字段为"tools",`content`包含多个结果。
|
| 244 |
+
|
| 245 |
+
```json
|
| 246 |
+
{
|
| 247 |
+
"data": [
|
| 248 |
+
{
|
| 249 |
+
"role": "tool",
|
| 250 |
+
"name": "tools",
|
| 251 |
+
"content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
|
| 252 |
+
}
|
| 253 |
+
]
|
| 254 |
+
}
|
| 255 |
+
```
|
| 256 |
+
|
| 257 |
+
对应如下的模型输入格式:
|
| 258 |
+
```
|
| 259 |
+
]~b]tool name=tools
|
| 260 |
+
Tool name: search_web
|
| 261 |
+
Tool result: test_result1
|
| 262 |
+
|
| 263 |
+
Tool name: search_web
|
| 264 |
+
Tool result: test_result2[e~[
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
虽然我们建议您参考以上格式,但只要返回给模型的输入易于理解,`name` 和 `content` 的具体内容完全由您自主决定。
|
transformers_deployment_guide.md
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 MiniMax Model Transformers Deployment Guide
|
| 2 |
+
|
| 3 |
+
[Transformers中文版部署指南](./transformers_deployment_guide_cn.md)
|
| 4 |
+
|
| 5 |
+
## 📖 Introduction
|
| 6 |
+
|
| 7 |
+
This guide will help you deploy the MiniMax-M1 model using the [Transformers](https://huggingface.co/docs/transformers/index) library. Transformers is a widely used deep learning library that provides a rich collection of pre-trained models and flexible model operation interfaces.
|
| 8 |
+
|
| 9 |
+
## 🛠️ Environment Setup
|
| 10 |
+
|
| 11 |
+
### Installing Transformers
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
pip install transformers torch accelerate
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
## 📋 Basic Usage Example
|
| 18 |
+
|
| 19 |
+
The pre-trained model can be used as follows:
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 23 |
+
|
| 24 |
+
MODEL_PATH = "{MODEL_PATH}"
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 27 |
+
|
| 28 |
+
messages = [
|
| 29 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
| 30 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
| 31 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
text = tokenizer.apply_chat_template(
|
| 35 |
+
messages,
|
| 36 |
+
tokenize=False,
|
| 37 |
+
add_generation_prompt=True
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
| 41 |
+
|
| 42 |
+
generation_config = GenerationConfig(
|
| 43 |
+
max_new_tokens=20,
|
| 44 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 45 |
+
use_cache=True,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
|
| 49 |
+
|
| 50 |
+
generated_ids = [
|
| 51 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 55 |
+
print(response)
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## ⚡ Performance Optimization
|
| 59 |
+
|
| 60 |
+
### Speeding up with Flash Attention
|
| 61 |
+
|
| 62 |
+
The code snippet above showcases inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
|
| 63 |
+
|
| 64 |
+
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature:
|
| 65 |
+
|
| 66 |
+
```bash
|
| 67 |
+
pip install -U flash-attn --no-build-isolation
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
Also make sure that you have hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [Flash Attention repository](https://github.com/Dao-AILab/flash-attention). Additionally, ensure you load your model in half-precision (e.g. `torch.float16`).
|
| 71 |
+
|
| 72 |
+
To load and run a model using Flash Attention-2, refer to the snippet below:
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
import torch
|
| 76 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 77 |
+
|
| 78 |
+
MODEL_PATH = "{MODEL_PATH}"
|
| 79 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 81 |
+
|
| 82 |
+
prompt = "My favourite condiment is"
|
| 83 |
+
|
| 84 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
| 85 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
| 86 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
| 87 |
+
print(response)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
## 📮 Getting Support
|
| 91 |
+
|
| 92 |
+
If you encounter any issues while deploying the MiniMax-M1 model:
|
| 93 |
+
- Please check our official documentation
|
| 94 |
+
- Contact our technical support team through official channels
|
| 95 |
+
- Submit an Issue on our GitHub repository
|
| 96 |
+
|
| 97 |
+
We continuously optimize the deployment experience on Transformers and welcome your feedback!
|
transformers_deployment_guide_cn.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 MiniMax 模型 Transformers 部署指南
|
| 2 |
+
|
| 3 |
+
## 📖 简介
|
| 4 |
+
|
| 5 |
+
本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。
|
| 6 |
+
|
| 7 |
+
## 🛠️ 环境准备
|
| 8 |
+
|
| 9 |
+
### 安装 Transformers
|
| 10 |
+
|
| 11 |
+
```bash
|
| 12 |
+
pip install transformers torch accelerate
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
## 📋 基本使用示例
|
| 16 |
+
|
| 17 |
+
预训练模型可以按照以下方式使用:
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 21 |
+
|
| 22 |
+
MODEL_PATH = "{MODEL_PATH}"
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 25 |
+
|
| 26 |
+
messages = [
|
| 27 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
| 28 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
| 29 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
text = tokenizer.apply_chat_template(
|
| 33 |
+
messages,
|
| 34 |
+
tokenize=False,
|
| 35 |
+
add_generation_prompt=True
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
| 39 |
+
|
| 40 |
+
generation_config = GenerationConfig(
|
| 41 |
+
max_new_tokens=20,
|
| 42 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 43 |
+
use_cache=True,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
|
| 47 |
+
|
| 48 |
+
generated_ids = [
|
| 49 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 53 |
+
print(response)
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## ⚡ 性能优化
|
| 57 |
+
|
| 58 |
+
### 使用 Flash Attention 加速
|
| 59 |
+
|
| 60 |
+
上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。
|
| 61 |
+
|
| 62 |
+
首先,确保安装最新版本的 Flash Attention 2 以包含滑动窗口注意力功能:
|
| 63 |
+
|
| 64 |
+
```bash
|
| 65 |
+
pip install -U flash-attn --no-build-isolation
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。
|
| 69 |
+
|
| 70 |
+
要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
import torch
|
| 74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 75 |
+
|
| 76 |
+
MODEL_PATH = "{MODEL_PATH}"
|
| 77 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 79 |
+
|
| 80 |
+
prompt = "My favourite condiment is"
|
| 81 |
+
|
| 82 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
| 83 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
| 84 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
| 85 |
+
print(response)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## 📮 获取支持
|
| 89 |
+
|
| 90 |
+
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
|
| 91 |
+
- 请查看我们的官方文档
|
| 92 |
+
- 通过官方渠道联系我们的技术支持团队
|
| 93 |
+
- 在我们的 GitHub 仓库提交 Issue
|
| 94 |
+
|
| 95 |
+
我们会持续优化 Transformers 上的部署体验,欢迎您的反馈!
|
vllm_deployment_guide.md
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 MiniMax Models vLLM Deployment Guide
|
| 2 |
+
|
| 3 |
+
[VLLM中文版部署指南](./vllm_deployment_guide_cn.md)
|
| 4 |
+
|
| 5 |
+
## 📖 Introduction
|
| 6 |
+
|
| 7 |
+
We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to deploy MiniMax-M1 model. Based on our testing, vLLM performs excellently when deploying this model, with the following features:
|
| 8 |
+
|
| 9 |
+
- 🔥 Outstanding service throughput performance
|
| 10 |
+
- ⚡ Efficient and intelligent memory management
|
| 11 |
+
- 📦 Powerful batch request processing capability
|
| 12 |
+
- ⚙️ Deeply optimized underlying performance
|
| 13 |
+
|
| 14 |
+
The MiniMax-M1 model can run efficiently on a single server equipped with 8 H800 or 8 H20 GPUs. In terms of hardware configuration, a server with 8 H800 GPUs can process context inputs up to 2 million tokens, while a server equipped with 8 H20 GPUs can support ultra-long context processing capabilities of up to 5 million tokens.
|
| 15 |
+
|
| 16 |
+
## 💾 Obtaining MiniMax Models
|
| 17 |
+
|
| 18 |
+
### MiniMax-M1 Model Obtaining
|
| 19 |
+
|
| 20 |
+
You can download the model from our official HuggingFace repository: [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1)
|
| 21 |
+
|
| 22 |
+
Download command:
|
| 23 |
+
```
|
| 24 |
+
pip install -U huggingface-hub
|
| 25 |
+
huggingface-cli download MiniMaxAI/MiniMax-M1
|
| 26 |
+
|
| 27 |
+
# If you encounter network issues, you can set a proxy
|
| 28 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
Or download using git:
|
| 32 |
+
|
| 33 |
+
```bash
|
| 34 |
+
git lfs install
|
| 35 |
+
git clone https://huggingface.co/MiniMaxAI/MiniMax-M1
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
⚠️ **Important Note**: Please ensure that [Git LFS](https://git-lfs.github.com/) is installed on your system, which is necessary for completely downloading the model weight files.
|
| 39 |
+
|
| 40 |
+
## 🛠️ Deployment Options
|
| 41 |
+
|
| 42 |
+
### Option 1: Deploy Using Docker (Recommended)
|
| 43 |
+
|
| 44 |
+
To ensure consistency and stability of the deployment environment, we recommend using Docker for deployment.
|
| 45 |
+
|
| 46 |
+
⚠️ **Version Requirements**:
|
| 47 |
+
- MiniMax-M1 model requires vLLM version 0.8.3 or later for full support
|
| 48 |
+
- If you are using a Docker image with vLLM version lower than the required version, you will need to:
|
| 49 |
+
1. Update to the latest vLLM code
|
| 50 |
+
2. Recompile vLLM from source. Follow the compilation instructions in Solution 2 of the Common Issues section
|
| 51 |
+
|
| 52 |
+
1. Get the container image:
|
| 53 |
+
```bash
|
| 54 |
+
docker pull vllm/vllm-openai:v0.8.3
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
2. Run the container:
|
| 58 |
+
```bash
|
| 59 |
+
# Set environment variables
|
| 60 |
+
IMAGE=vllm/vllm-openai:v0.8.3
|
| 61 |
+
MODEL_DIR=<model storage path>
|
| 62 |
+
CODE_DIR=<code path>
|
| 63 |
+
NAME=MiniMaxImage
|
| 64 |
+
|
| 65 |
+
# Docker run configuration
|
| 66 |
+
DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
|
| 67 |
+
|
| 68 |
+
# Start the container
|
| 69 |
+
sudo docker run -it \
|
| 70 |
+
-v $MODEL_DIR:$MODEL_DIR \
|
| 71 |
+
-v $CODE_DIR:$CODE_DIR \
|
| 72 |
+
--name $NAME \
|
| 73 |
+
$DOCKER_RUN_CMD \
|
| 74 |
+
$IMAGE /bin/bash
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
### Option 2: Direct Installation of vLLM
|
| 79 |
+
|
| 80 |
+
If your environment meets the following requirements:
|
| 81 |
+
|
| 82 |
+
- CUDA 12.1
|
| 83 |
+
- PyTorch 2.1
|
| 84 |
+
|
| 85 |
+
You can directly install vLLM
|
| 86 |
+
|
| 87 |
+
Installation command:
|
| 88 |
+
```bash
|
| 89 |
+
pip install vllm
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
💡 If you are using other environment configurations, please refer to the [vLLM Installation Guide](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
| 93 |
+
|
| 94 |
+
## 🚀 Starting the Service
|
| 95 |
+
|
| 96 |
+
### Launch MiniMax-M1 Service
|
| 97 |
+
|
| 98 |
+
```bash
|
| 99 |
+
export SAFETENSORS_FAST_GPU=1
|
| 100 |
+
export VLLM_USE_V1=0
|
| 101 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
| 102 |
+
--model <model storage path> \
|
| 103 |
+
--tensor-parallel-size 8 \
|
| 104 |
+
--trust-remote-code \
|
| 105 |
+
--quantization experts_int8 \
|
| 106 |
+
--max_model_len 4096 \
|
| 107 |
+
--dtype bfloat16
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
### API Call Example
|
| 111 |
+
|
| 112 |
+
```bash
|
| 113 |
+
curl http://localhost:8000/v1/chat/completions \
|
| 114 |
+
-H "Content-Type: application/json" \
|
| 115 |
+
-d '{
|
| 116 |
+
"model": "MiniMaxAI/MiniMax-Text-01",
|
| 117 |
+
"messages": [
|
| 118 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 119 |
+
{"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
|
| 120 |
+
]
|
| 121 |
+
}'
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## ❗ Common Issues
|
| 125 |
+
|
| 126 |
+
### Module Loading Problems
|
| 127 |
+
If you encounter the following error:
|
| 128 |
+
```
|
| 129 |
+
import vllm._C # noqa
|
| 130 |
+
ModuleNotFoundError: No module named 'vllm._C'
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
Or
|
| 134 |
+
|
| 135 |
+
```
|
| 136 |
+
MiniMax-M1 model is not currently supported
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
We provide two solutions:
|
| 140 |
+
|
| 141 |
+
#### Solution 1: Copy Dependency Files
|
| 142 |
+
```bash
|
| 143 |
+
cd <working directory>
|
| 144 |
+
git clone https://github.com/vllm-project/vllm.git
|
| 145 |
+
cd vllm
|
| 146 |
+
cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
|
| 147 |
+
cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
#### Solution 2: Install from Source
|
| 151 |
+
```bash
|
| 152 |
+
cd <working directory>
|
| 153 |
+
git clone https://github.com/vllm-project/vllm.git
|
| 154 |
+
|
| 155 |
+
cd vllm/
|
| 156 |
+
pip install -e .
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
## 📮 Getting Support
|
| 160 |
+
|
| 161 |
+
If you encounter any issues while deploying MiniMax-M1 model:
|
| 162 |
+
- Please check our official documentation
|
| 163 |
+
- Contact our technical support team through official channels
|
| 164 |
+
- Submit an [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues) on our GitHub repository
|
| 165 |
+
|
| 166 |
+
We will continuously optimize the deployment experience of this model and welcome your feedback!
|
vllm_deployment_guide_cn.md
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 MiniMax 模型 vLLM 部署指南
|
| 2 |
+
|
| 3 |
+
## 📖 简介
|
| 4 |
+
|
| 5 |
+
我们推荐使用 [vLLM](https://docs.vllm.ai/en/latest/) 来部署 [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1) 模型。经过我们的测试,vLLM 在部署这个模型时表现出色,具有以下特点:
|
| 6 |
+
|
| 7 |
+
- 🔥 卓越的服务吞吐量性能
|
| 8 |
+
- ⚡ 高效智能的内存管理机制
|
| 9 |
+
- 📦 强大的批量请求处理能力
|
| 10 |
+
- ⚙️ 深度优化的底层性能
|
| 11 |
+
|
| 12 |
+
MiniMax-M1 模型可在单台配备8个H800或8个H20 GPU的服务器上高效运行。在硬件配置方面,搭载8个H800 GPU的服务器可处理长达200万token的上下文输入,而配备8个H20 GPU的服务器则能够支持高达500万token的超长上下文处理能力。
|
| 13 |
+
|
| 14 |
+
## 💾 获取 MiniMax 模型
|
| 15 |
+
|
| 16 |
+
### MiniMax-M1 模型获取
|
| 17 |
+
|
| 18 |
+
您可以从我们的官方 HuggingFace 仓库下载模型:[MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1)
|
| 19 |
+
|
| 20 |
+
下载命令:
|
| 21 |
+
```
|
| 22 |
+
pip install -U huggingface-hub
|
| 23 |
+
huggingface-cli download MiniMaxAI/MiniMax-M1
|
| 24 |
+
|
| 25 |
+
# 如果遇到网络问题,可以设置代理
|
| 26 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
或者使用 git 下载:
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
git lfs install
|
| 33 |
+
git clone https://huggingface.co/MiniMaxAI/MiniMax-M1
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
⚠️ **重要提示**:请确保系统已安装 [Git LFS](https://git-lfs.github.com/),这对于完整下载模型权重文件是必需的。
|
| 37 |
+
|
| 38 |
+
## 🛠️ 部署方案
|
| 39 |
+
|
| 40 |
+
### 方案一:使用 Docker 部署(推荐)
|
| 41 |
+
|
| 42 |
+
为确保部署环境的一致性和稳定性,我们推荐使用 Docker 进行部署。
|
| 43 |
+
|
| 44 |
+
⚠️ **版本要求**:
|
| 45 |
+
- MiniMax-M1 模型需要 vLLM 0.8.3 或更高版本才能获得完整支持
|
| 46 |
+
|
| 47 |
+
1. 获取容器镜像:
|
| 48 |
+
```bash
|
| 49 |
+
docker pull vllm/vllm-openai:v0.8.3
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
2. 运行容器:
|
| 53 |
+
```bash
|
| 54 |
+
# 设置环境变量
|
| 55 |
+
IMAGE=vllm/vllm-openai:v0.8.3
|
| 56 |
+
MODEL_DIR=<模型存放路径>
|
| 57 |
+
CODE_DIR=<代码路径>
|
| 58 |
+
NAME=MiniMaxImage
|
| 59 |
+
|
| 60 |
+
# Docker运行配置
|
| 61 |
+
DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
|
| 62 |
+
|
| 63 |
+
# 启动容器
|
| 64 |
+
sudo docker run -it \
|
| 65 |
+
-v $MODEL_DIR:$MODEL_DIR \
|
| 66 |
+
-v $CODE_DIR:$CODE_DIR \
|
| 67 |
+
--name $NAME \
|
| 68 |
+
$DOCKER_RUN_CMD \
|
| 69 |
+
$IMAGE /bin/bash
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
### 方案二:直接安装 vLLM
|
| 74 |
+
|
| 75 |
+
如果您的环境满足以下要求:
|
| 76 |
+
|
| 77 |
+
- CUDA 12.1
|
| 78 |
+
- PyTorch 2.1
|
| 79 |
+
|
| 80 |
+
可以直接安装 vLLM
|
| 81 |
+
|
| 82 |
+
安装命令:
|
| 83 |
+
```bash
|
| 84 |
+
pip install vllm
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
💡 如果您使用其他环境配置,请参考 [vLLM 安装指南](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
| 88 |
+
|
| 89 |
+
## 🚀 启动服务
|
| 90 |
+
|
| 91 |
+
### 启动 MiniMax-M1 服务
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
export SAFETENSORS_FAST_GPU=1
|
| 95 |
+
export VLLM_USE_V1=0
|
| 96 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
| 97 |
+
--model <模型存放路径> \
|
| 98 |
+
--tensor-parallel-size 8 \
|
| 99 |
+
--trust-remote-code \
|
| 100 |
+
--quantization experts_int8 \
|
| 101 |
+
--max_model_len 4096 \
|
| 102 |
+
--dtype bfloat16
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
### API 调用示例
|
| 106 |
+
|
| 107 |
+
```bash
|
| 108 |
+
curl http://localhost:8000/v1/chat/completions \
|
| 109 |
+
-H "Content-Type: application/json" \
|
| 110 |
+
-d '{
|
| 111 |
+
"model": "MiniMaxAI/MiniMax-Text-01",
|
| 112 |
+
"messages": [
|
| 113 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 114 |
+
{"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
|
| 115 |
+
]
|
| 116 |
+
}'
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## ❗ 常见问题
|
| 120 |
+
|
| 121 |
+
### 模块加载问题
|
| 122 |
+
如果遇到以下错误:
|
| 123 |
+
```
|
| 124 |
+
import vllm._C # noqa
|
| 125 |
+
ModuleNotFoundError: No module named 'vllm._C'
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
或
|
| 129 |
+
|
| 130 |
+
```
|
| 131 |
+
当前并不支持 MiniMax-M1 模型
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
我们提供两种解决方案:
|
| 135 |
+
|
| 136 |
+
#### 解决方案一:复制依赖文件
|
| 137 |
+
```bash
|
| 138 |
+
cd <工作目录>
|
| 139 |
+
git clone https://github.com/vllm-project/vllm.git
|
| 140 |
+
cd vllm
|
| 141 |
+
cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
|
| 142 |
+
cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
#### 解决方案二:从源码安装
|
| 146 |
+
```bash
|
| 147 |
+
cd <工作目录>
|
| 148 |
+
git clone https://github.com/vllm-project/vllm.git
|
| 149 |
+
|
| 150 |
+
cd vllm/
|
| 151 |
+
pip install -e .
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## 📮 获取支持
|
| 155 |
+
|
| 156 |
+
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
|
| 157 |
+
- 请查看我们的官方文档
|
| 158 |
+
- 通过官方渠道联系我们的技术支持团队
|
| 159 |
+
- 在我们的 GitHub 仓库提交 [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues)
|
| 160 |
+
|
| 161 |
+
我们会持续优化模型的部署体验,欢迎您的反馈!
|