|  | """ MiniMaxM1 model configuration""" | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MiniMaxM1Config(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`MiniMaxM1Model`]. It is used to instantiate an | 
					
						
						|  | MiniMaxM1 model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
						
						|  | with the defaults will yield a similar configuration to that of the MiniMaxM1. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 32000): | 
					
						
						|  | Vocabulary size of the MiniMaxM1 model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`MiniMaxM1Model`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 14336): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*, defaults to 8): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to `4096*32`): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. MiniMaxM1's sliding window attention | 
					
						
						|  | allows sequence of up to 4096*32 tokens. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-05): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | pad_token_id (`int`, *optional*): | 
					
						
						|  | The id of the padding token. | 
					
						
						|  | bos_token_id (`int`, *optional*, defaults to 1): | 
					
						
						|  | The id of the "beginning-of-sequence" token. | 
					
						
						|  | eos_token_id (`int`, *optional*, defaults to 2): | 
					
						
						|  | The id of the "end-of-sequence" token. | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether the model's input and output word embeddings should be tied. | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 1000000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | sliding_window (`int`, *optional*): | 
					
						
						|  | Sliding window attention window size. If not specified, will default to `4096`. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | num_experts_per_tok (`int`, *optional*, defaults to 2): | 
					
						
						|  | The number of experts to route per-token, can be also interpreted as the `top-k` routing | 
					
						
						|  | parameter | 
					
						
						|  | num_local_experts (`int`, *optional*, defaults to 8): | 
					
						
						|  | Number of experts per Sparse MLP layer. | 
					
						
						|  | output_router_logits (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not the router logits should be returned by the model. Enabeling this will also | 
					
						
						|  | allow the model to output the auxiliary loss. See [here]() for more details | 
					
						
						|  | router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | 
					
						
						|  | The aux loss factor for the total loss. | 
					
						
						|  | router_jitter_noise (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Amount of noise to add to the router. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import MiniMaxM1Model, MiniMaxM1Config | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a MiniMaxM1 style configuration | 
					
						
						|  | >>> configuration = MiniMaxM1Config() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model from the MiniMaxM1 style configuration | 
					
						
						|  | >>> model = MiniMaxM1Model(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "MiniMaxM1" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=32000, | 
					
						
						|  | hidden_size=4096, | 
					
						
						|  | intermediate_size=14336, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=8, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=4096 * 32, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-5, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pad_token_id=None, | 
					
						
						|  | bos_token_id=None, | 
					
						
						|  | eos_token_id=None, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=1e6, | 
					
						
						|  | sliding_window=None, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | num_experts_per_tok=2, | 
					
						
						|  | num_local_experts=8, | 
					
						
						|  | output_router_logits=False, | 
					
						
						|  | router_aux_loss_coef=0.001, | 
					
						
						|  | router_jitter_noise=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.sliding_window = sliding_window | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  |  | 
					
						
						|  | self.num_experts_per_tok = num_experts_per_tok | 
					
						
						|  | self.num_local_experts = num_local_experts | 
					
						
						|  | self.output_router_logits = output_router_logits | 
					
						
						|  | self.router_aux_loss_coef = router_aux_loss_coef | 
					
						
						|  | self.router_jitter_noise = router_jitter_noise | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  |