AntonV HF Staff commited on
Commit
200351b
·
1 Parent(s): 17f852d

v5 version

Browse files
config.json CHANGED
@@ -1,113 +1,44 @@
1
  {
2
- "architectures": [
3
- "MiniMaxM2ForCausalLM"
4
- ],
5
- "attn_type_list": [
6
- 1,
7
- 1,
8
- 1,
9
- 1,
10
- 1,
11
- 1,
12
- 1,
13
- 1,
14
- 1,
15
- 1,
16
- 1,
17
- 1,
18
- 1,
19
- 1,
20
- 1,
21
- 1,
22
- 1,
23
- 1,
24
- 1,
25
- 1,
26
- 1,
27
- 1,
28
- 1,
29
- 1,
30
- 1,
31
- 1,
32
- 1,
33
- 1,
34
- 1,
35
- 1,
36
- 1,
37
- 1,
38
- 1,
39
- 1,
40
- 1,
41
- 1,
42
- 1,
43
- 1,
44
- 1,
45
- 1,
46
- 1,
47
- 1,
48
- 1,
49
- 1,
50
- 1,
51
- 1,
52
- 1,
53
- 1,
54
- 1,
55
- 1,
56
- 1,
57
- 1,
58
- 1,
59
- 1,
60
- 1,
61
- 1,
62
- 1,
63
- 1,
64
- 1,
65
- 1,
66
- 1,
67
- 1
68
- ],
69
- "auto_map": {
70
- "AutoConfig": "configuration_minimax_m2.MiniMaxM2Config",
71
- "AutoModelForCausalLM": "modeling_minimax_m2.MiniMaxM2ForCausalLM"
72
- },
73
  "head_dim": 128,
74
  "hidden_act": "silu",
75
  "hidden_size": 3072,
 
76
  "intermediate_size": 1536,
77
  "max_position_embeddings": 196608,
78
  "model_type": "minimax_m2",
79
- "mtp_transformer_layers": 1,
80
  "num_attention_heads": 48,
81
  "num_experts_per_tok": 8,
82
  "num_hidden_layers": 62,
83
  "num_key_value_heads": 8,
84
  "num_local_experts": 256,
85
- "num_mtp_modules": 3,
86
- "qk_norm_type": "per_layer",
87
  "quantization_config": {
88
  "activation_scheme": "dynamic",
89
- "fmt": "float8_e4m3fn",
90
- "quant_method": "fp8",
91
- "weight_block_size": [
92
- 128,
93
- 128
94
- ],
95
  "modules_to_not_convert": [
96
  "gate",
97
  "e_score_correction_bias",
98
  "lm_head"
 
 
 
 
 
99
  ]
100
  },
101
  "rms_norm_eps": 1e-06,
102
- "rope_theta": 5000000,
103
- "rotary_dim": 64,
104
- "scoring_func": "sigmoid",
105
- "shared_intermediate_size": 0,
 
 
 
106
  "tie_word_embeddings": false,
107
- "transformers_version": "4.46.1",
108
  "use_cache": true,
109
- "use_mtp": true,
110
- "use_qk_norm": true,
111
- "use_routing_bias": true,
112
  "vocab_size": 200064
113
  }
 
1
  {
2
+ "attention_dropout": 0.0,
3
+ "bos_token_id": 200034,
4
+ "eos_token_id": 200020,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "head_dim": 128,
6
  "hidden_act": "silu",
7
  "hidden_size": 3072,
8
+ "initializer_range": 0.02,
9
  "intermediate_size": 1536,
10
  "max_position_embeddings": 196608,
11
  "model_type": "minimax_m2",
 
12
  "num_attention_heads": 48,
13
  "num_experts_per_tok": 8,
14
  "num_hidden_layers": 62,
15
  "num_key_value_heads": 8,
16
  "num_local_experts": 256,
17
+ "output_router_logits": false,
 
18
  "quantization_config": {
19
  "activation_scheme": "dynamic",
20
+ "dequantize": false,
 
 
 
 
 
21
  "modules_to_not_convert": [
22
  "gate",
23
  "e_score_correction_bias",
24
  "lm_head"
25
+ ],
26
+ "quant_method": "fp8",
27
+ "weight_block_size": [
28
+ 128,
29
+ 128
30
  ]
31
  },
32
  "rms_norm_eps": 1e-06,
33
+ "rope_parameters": {
34
+ "partial_rotary_factor": 0.5,
35
+ "rope_theta": 5000000.0,
36
+ "rope_type": "default"
37
+ },
38
+ "router_aux_loss_coef": 0.001,
39
+ "router_jitter_noise": 0.0,
40
  "tie_word_embeddings": false,
41
+ "transformers_version": "5.0.0.dev0",
42
  "use_cache": true,
 
 
 
43
  "vocab_size": 200064
44
  }
configuration_minimax_m2.py DELETED
@@ -1,200 +0,0 @@
1
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
- # This file was automatically generated from src/transformers/models/minimax_m2/modular_minimax_m2.py.
3
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
- # the file from the modular. If any change should be done, please apply the change to the
5
- # modular_minimax_m2.py file directly. One of our CI enforces this.
6
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
- # coding=utf-8
8
- # Copyright 2025 the HuggingFace Team. All rights reserved.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
-
23
- from transformers.configuration_utils import PretrainedConfig
24
-
25
-
26
- class MiniMaxM2Config(PretrainedConfig):
27
- r"""
28
- This is the configuration class to store the configuration of a [`MiniMaxM2Model`]. It is used to instantiate an
29
- MiniMaxM2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
30
- with the defaults will yield a similar configuration to that of the MiniMaxM2-7B-v0.1 or MiniMaxM2-7B-Instruct-v0.1.
31
-
32
- [minimax_m2ai/MiniMaxM2-8x7B](https://huggingface.co/minimax_m2ai/MiniMaxM2-8x7B)
33
- [minimax_m2ai/MiniMaxM2-7B-Instruct-v0.1](https://huggingface.co/minimax_m2ai/MiniMaxM2-7B-Instruct-v0.1)
34
-
35
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
- documentation from [`PretrainedConfig`] for more information.
37
-
38
-
39
- Args:
40
- vocab_size (`int`, *optional*, defaults to 32000):
41
- Vocabulary size of the MiniMaxM2 model. Defines the number of different tokens that can be represented by the
42
- `inputs_ids` passed when calling [`MiniMaxM2Model`]
43
- hidden_size (`int`, *optional*, defaults to 4096):
44
- Dimension of the hidden representations.
45
- intermediate_size (`int`, *optional*, defaults to 14336):
46
- Dimension of the MLP representations.
47
- num_hidden_layers (`int`, *optional*, defaults to 32):
48
- Number of hidden layers in the Transformer encoder.
49
- num_attention_heads (`int`, *optional*, defaults to 32):
50
- Number of attention heads for each attention layer in the Transformer encoder.
51
- num_key_value_heads (`int`, *optional*, defaults to 8):
52
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
- by meanpooling all the original heads within that group. For more details, check out [this
57
- paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
58
- head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
59
- The attention head dimension.
60
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
- The non-linear activation function (function or string) in the decoder.
62
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
63
- The maximum sequence length that this model might ever be used with. MiniMaxM2's sliding window attention
64
- allows sequence of up to 4096*32 tokens.
65
- initializer_range (`float`, *optional*, defaults to 0.02):
66
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
68
- The epsilon used by the rms normalization layers.
69
- use_cache (`bool`, *optional*, defaults to `True`):
70
- Whether or not the model should return the last key/values attentions (not used by all models). Only
71
- relevant if `config.is_decoder=True`.
72
- pad_token_id (`int`, *optional*):
73
- The id of the padding token.
74
- bos_token_id (`int`, *optional*, defaults to 1):
75
- The id of the "beginning-of-sequence" token.
76
- eos_token_id (`int`, *optional*, defaults to 2):
77
- The id of the "end-of-sequence" token.
78
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
- Whether the model's input and output word embeddings should be tied.
80
- rope_theta (`float`, *optional*, defaults to 1000000.0):
81
- The base period of the RoPE embeddings.
82
- sliding_window (`int`, *optional*):
83
- Sliding window attention window size. If not specified, will default to `4096`.
84
- attention_dropout (`float`, *optional*, defaults to 0.0):
85
- The dropout ratio for the attention probabilities.
86
- num_experts_per_tok (`int`, *optional*, defaults to 2):
87
- The number of experts to route per-token, can be also interpreted as the `top-k` routing
88
- parameter
89
- num_local_experts (`int`, *optional*, defaults to 8):
90
- Number of experts per Sparse MLP layer.
91
- output_router_logits (`bool`, *optional*, defaults to `False`):
92
- Whether or not the router logits should be returned by the model. Enabling this will also
93
- allow the model to output the auxiliary loss. See [here]() for more details
94
- router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
95
- The aux loss factor for the total loss.
96
- router_jitter_noise (`float`, *optional*, defaults to 0.0):
97
- Amount of noise to add to the router.
98
-
99
- ```python
100
- >>> from transformers import MiniMaxM2Model, MiniMaxM2Config
101
-
102
- >>> # Initializing a MiniMaxM2 7B style configuration
103
- >>> configuration = MiniMaxM2Config()
104
-
105
- >>> # Initializing a model from the MiniMaxM2 7B style configuration
106
- >>> model = MiniMaxM2Model(configuration)
107
-
108
- >>> # Accessing the model configuration
109
- >>> configuration = model.config
110
- ```"""
111
-
112
- model_type = "minimax_m2"
113
- keys_to_ignore_at_inference = ["past_key_values"]
114
- base_model_tp_plan = {
115
- "layers.*.self_attn.q_proj": "colwise",
116
- "layers.*.self_attn.k_proj": "colwise",
117
- "layers.*.self_attn.v_proj": "colwise",
118
- "layers.*.self_attn.o_proj": "rowwise",
119
- "layers.*.block_sparse_moe.gate": "colwise_rep", # we need to replicate here to correctly route experts
120
- "layers.*.block_sparse_moe.experts.*.w1": "colwise",
121
- "layers.*.block_sparse_moe.experts.*.w2": "rowwise",
122
- "layers.*.block_sparse_moe.experts.*.w3": "colwise",
123
- }
124
- base_model_pp_plan = {
125
- "embed_tokens": (["input_ids"], ["inputs_embeds"]),
126
- "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
127
- "norm": (["hidden_states"], ["hidden_states"]),
128
- }
129
-
130
- def __init__(
131
- self,
132
- vocab_size=32000,
133
- hidden_size=4096,
134
- intermediate_size=14336,
135
- num_hidden_layers=32,
136
- num_attention_heads=32,
137
- num_key_value_heads=8,
138
- head_dim=None,
139
- hidden_act="silu",
140
- max_position_embeddings=4096 * 32,
141
- initializer_range=0.02,
142
- rms_norm_eps=1e-5,
143
- use_cache=True,
144
- pad_token_id=None,
145
- bos_token_id=1,
146
- eos_token_id=2,
147
- tie_word_embeddings=False,
148
- rope_theta=1e6,
149
- sliding_window=None,
150
- attention_dropout=0.0,
151
- num_experts_per_tok=2,
152
- num_local_experts=8,
153
- output_router_logits=False,
154
- router_aux_loss_coef=0.001,
155
- router_jitter_noise=0.0,
156
- **kwargs,
157
- ):
158
- self.vocab_size = vocab_size
159
- self.max_position_embeddings = max_position_embeddings
160
- self.hidden_size = hidden_size
161
- self.intermediate_size = intermediate_size
162
- self.num_hidden_layers = num_hidden_layers
163
- self.num_attention_heads = num_attention_heads
164
- self.sliding_window = sliding_window
165
-
166
- # for backward compatibility
167
- if num_key_value_heads is None:
168
- num_key_value_heads = num_attention_heads
169
-
170
- self.num_key_value_heads = num_key_value_heads
171
- self.hidden_act = hidden_act
172
- self.initializer_range = initializer_range
173
- self.rms_norm_eps = rms_norm_eps
174
- self.use_cache = use_cache
175
- self.rope_theta = rope_theta
176
- self.attention_dropout = attention_dropout
177
- self.head_dim = head_dim
178
-
179
- self.num_experts_per_tok = num_experts_per_tok
180
- self.num_local_experts = num_local_experts
181
- self.output_router_logits = output_router_logits
182
- self.router_aux_loss_coef = router_aux_loss_coef
183
- self.router_jitter_noise = router_jitter_noise
184
-
185
- self.use_qk_norm = kwargs.pop("use_qk_norm", False)
186
- self.rotary_dim = kwargs.pop("rotary_dim", self.head_dim)
187
- self.partial_rotary_factor = kwargs.pop("partial_rotary_factor", 1)
188
- if self.head_dim is not None:
189
- self.partial_rotary_factor = self.rotary_dim / self.head_dim
190
-
191
- super().__init__(
192
- pad_token_id=pad_token_id,
193
- bos_token_id=bos_token_id,
194
- eos_token_id=eos_token_id,
195
- tie_word_embeddings=tie_word_embeddings,
196
- **kwargs,
197
- )
198
-
199
-
200
- __all__ = ["MiniMaxM2Config"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_minimax_m2.py DELETED
@@ -1,706 +0,0 @@
1
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
- # This file was automatically generated from src/transformers/models/minimax_m2/modular_minimax_m2.py.
3
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
- # the file from the modular. If any change should be done, please apply the change to the
5
- # modular_minimax_m2.py file directly. One of our CI enforces this.
6
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
- # coding=utf-8
8
- # Copyright 2025 the HuggingFace Team. All rights reserved.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
-
23
- from collections.abc import Callable
24
- from typing import Optional, Union, Unpack
25
-
26
- import torch
27
- from torch import nn
28
-
29
- from transformers.activations import ACT2FN
30
- from transformers.cache_utils import Cache, DynamicCache
31
- from transformers.generation import GenerationMixin
32
- from transformers.integrations import use_kernel_forward_from_hub
33
- from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
34
- from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
35
- from transformers.modeling_layers import (
36
- GenericForQuestionAnswering,
37
- GenericForSequenceClassification,
38
- GenericForTokenClassification,
39
- GradientCheckpointingLayer,
40
- )
41
- from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
42
- from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
43
- from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
44
- from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
45
- from transformers.utils.deprecation import deprecate_kwarg
46
- from transformers.utils.generic import OutputRecorder, check_model_inputs
47
- from .configuration_minimax_m2 import MiniMaxM2Config
48
-
49
-
50
- class MiniMaxM2MLP(nn.Module):
51
- def __init__(self, config: MiniMaxM2Config):
52
- super().__init__()
53
- self.ffn_dim = config.intermediate_size
54
- self.hidden_dim = config.hidden_size
55
-
56
- self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
57
- self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
58
- self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
59
-
60
- self.act_fn = ACT2FN[config.hidden_act]
61
-
62
- def forward(self, hidden_states):
63
- current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
64
- current_hidden_states = self.w2(current_hidden_states)
65
- return current_hidden_states
66
-
67
-
68
- class MiniMaxM2Experts(nn.ModuleList):
69
- """
70
- ModuleList of experts.
71
- """
72
-
73
- def __init__(self, config: MiniMaxM2Config):
74
- super().__init__()
75
- self.top_k = config.num_experts_per_tok
76
- self.num_experts = config.num_local_experts
77
- for _ in range(self.num_experts):
78
- self.append(MiniMaxM2MLP(config))
79
-
80
- def forward(
81
- self, hidden_states: torch.Tensor, top_k_index: torch.Tensor, top_k_weights: torch.Tensor
82
- ) -> torch.Tensor:
83
- """
84
- Args:
85
- hidden_states: (batch_size * sequence_length, hidden_dim)
86
- selected_experts: (batch_size * sequence_length, top_k)
87
- routing_weights: (batch_size * sequence_length, top_k)
88
- Returns:
89
- (batch_size * sequence_length, hidden_dim)
90
- """
91
- final_hidden_states = torch.zeros_like(hidden_states)
92
- expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts).permute(2, 1, 0)
93
-
94
- expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
95
- for expert_idx in expert_hit:
96
- idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
97
- current_state = hidden_states[None, top_x].reshape(-1, hidden_states.shape[-1])
98
- current_hidden_states = self[expert_idx](current_state) * top_k_weights[top_x, idx, None]
99
- final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
100
- return final_hidden_states
101
-
102
-
103
- class MiniMaxM2SparseMoeBlock(nn.Module):
104
- def __init__(self, config):
105
- super().__init__()
106
- self.top_k = config.num_experts_per_tok
107
- self.jitter_noise = config.router_jitter_noise
108
- self.gate = nn.Linear(config.hidden_size, config.num_local_experts, bias=False)
109
- self.experts = MiniMaxM2Experts(config)
110
- self.register_buffer("e_score_correction_bias", torch.zeros(config.num_local_experts))
111
-
112
- def route_tokens_to_experts(self, router_logits):
113
- routing_weights = torch.nn.functional.sigmoid(router_logits.float())
114
- scores_for_choice = routing_weights + self.e_score_correction_bias
115
- _, top_k_index = torch.topk(scores_for_choice, self.top_k, dim=-1, sorted=False)
116
- top_k_weights = routing_weights.gather(1, top_k_index)
117
- top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True)
118
- return top_k_index, top_k_weights.to(router_logits.dtype)
119
-
120
- def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
121
- batch_size, sequence_length, hidden_dim = hidden_states.shape
122
- if self.training and self.jitter_noise > 0:
123
- hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
124
- hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
125
- router_logits = self.gate(hidden_states)
126
- top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
127
- hidden_states = self.experts(hidden_states, top_k_index, top_k_weights.to(hidden_states.dtype))
128
- hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim)
129
- return hidden_states, router_logits
130
-
131
-
132
- @use_kernel_forward_from_hub("RMSNorm")
133
- class MiniMaxM2RMSNorm(nn.Module):
134
- def __init__(self, hidden_size, eps=1e-6):
135
- """
136
- MiniMaxM2RMSNorm is equivalent to T5LayerNorm
137
- """
138
- super().__init__()
139
- self.weight = nn.Parameter(torch.ones(hidden_size))
140
- self.variance_epsilon = eps
141
-
142
- def forward(self, hidden_states):
143
- input_dtype = hidden_states.dtype
144
- hidden_states = hidden_states.to(torch.float32)
145
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
146
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
147
- return self.weight * hidden_states.to(input_dtype)
148
-
149
- def extra_repr(self):
150
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
151
-
152
-
153
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
154
- """
155
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
156
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
157
- """
158
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
159
- if n_rep == 1:
160
- return hidden_states
161
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
162
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
163
-
164
-
165
- def eager_attention_forward(
166
- module: nn.Module,
167
- query: torch.Tensor,
168
- key: torch.Tensor,
169
- value: torch.Tensor,
170
- attention_mask: Optional[torch.Tensor],
171
- scaling: float,
172
- dropout: float = 0.0,
173
- **kwargs: Unpack[TransformersKwargs],
174
- ):
175
- key_states = repeat_kv(key, module.num_key_value_groups)
176
- value_states = repeat_kv(value, module.num_key_value_groups)
177
-
178
- attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
179
- if attention_mask is not None:
180
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
181
- attn_weights = attn_weights + causal_mask
182
-
183
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
184
- attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
185
- attn_output = torch.matmul(attn_weights, value_states)
186
- attn_output = attn_output.transpose(1, 2).contiguous()
187
-
188
- return attn_output, attn_weights
189
-
190
-
191
- def rotate_half(x):
192
- """Rotates half the hidden dims of the input."""
193
- x1 = x[..., : x.shape[-1] // 2]
194
- x2 = x[..., x.shape[-1] // 2 :]
195
- return torch.cat((-x2, x1), dim=-1)
196
-
197
-
198
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
199
- """Applies Rotary Position Embedding to the query and key tensors.
200
-
201
- Args:
202
- q (`torch.Tensor`): The query tensor.
203
- k (`torch.Tensor`): The key tensor.
204
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
205
- sin (`torch.Tensor`): The sine part of the rotary embedding.
206
- position_ids (`torch.Tensor`, *optional*):
207
- Deprecated and unused.
208
- unsqueeze_dim (`int`, *optional*, defaults to 1):
209
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
210
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
211
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
212
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
213
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
214
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
215
- Returns:
216
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
217
- """
218
- cos = cos.unsqueeze(unsqueeze_dim)
219
- sin = sin.unsqueeze(unsqueeze_dim)
220
-
221
- # Keep half or full tensor for later concatenation
222
- rotary_dim = cos.shape[-1]
223
- q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
224
- k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
225
-
226
- # Apply rotary embeddings on the first half or full tensor
227
- q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
228
- k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
229
-
230
- # Concatenate back to full shape
231
- q_embed = torch.cat([q_embed, q_pass], dim=-1)
232
- k_embed = torch.cat([k_embed, k_pass], dim=-1)
233
- return q_embed, k_embed
234
-
235
-
236
- class MiniMaxM2Attention(nn.Module):
237
- """Multi-headed attention from 'Attention Is All You Need' paper"""
238
-
239
- def __init__(self, config: MiniMaxM2Config, layer_idx: int):
240
- super().__init__()
241
- self.config = config
242
- self.layer_idx = layer_idx
243
- self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
244
- self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
245
- self.scaling = self.head_dim**-0.5
246
- self.attention_dropout = config.attention_dropout
247
- self.is_causal = True
248
- self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
249
- self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
250
- self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
251
- self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
252
-
253
- self.use_qk_norm = config.use_qk_norm
254
- if self.use_qk_norm:
255
- self.q_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_attention_heads, eps=config.rms_norm_eps)
256
- self.k_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_key_value_heads, eps=config.rms_norm_eps)
257
-
258
- @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
259
- def forward(
260
- self,
261
- hidden_states: torch.Tensor,
262
- position_embeddings: tuple[torch.Tensor, torch.Tensor],
263
- attention_mask: Optional[torch.Tensor],
264
- past_key_values: Optional[Cache] = None,
265
- cache_position: Optional[torch.LongTensor] = None,
266
- **kwargs: Unpack[FlashAttentionKwargs],
267
- ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
268
- input_shape = hidden_states.shape[:-1]
269
- hidden_shape = (*input_shape, -1, self.head_dim)
270
-
271
- query_states = self.q_proj(hidden_states)
272
- key_states = self.k_proj(hidden_states)
273
- value_states = self.v_proj(hidden_states)
274
-
275
- if self.use_qk_norm: # main diff from Llama
276
- query_states = self.q_norm(query_states)
277
- key_states = self.k_norm(key_states)
278
-
279
- key_states = key_states.view(hidden_shape)
280
- query_states = query_states.view(hidden_shape)
281
- value_states = value_states.view(hidden_shape)
282
-
283
- query_states = query_states.transpose(1, 2)
284
- key_states = key_states.transpose(1, 2)
285
- value_states = value_states.transpose(1, 2)
286
-
287
- cos, sin = position_embeddings
288
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
289
-
290
- if past_key_values is not None:
291
- # sin and cos are specific to RoPE models; position_ids needed for the static cache
292
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
293
- key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
294
-
295
- attention_interface: Callable = eager_attention_forward
296
- if self.config._attn_implementation != "eager":
297
- attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
298
-
299
- attn_output, attn_weights = attention_interface(
300
- self,
301
- query_states,
302
- key_states,
303
- value_states,
304
- attention_mask,
305
- dropout=0.0 if not self.training else self.attention_dropout,
306
- scaling=self.scaling,
307
- **kwargs,
308
- )
309
-
310
- attn_output = attn_output.reshape(*input_shape, -1).contiguous()
311
- attn_output = self.o_proj(attn_output)
312
- return attn_output, attn_weights
313
-
314
-
315
- class MiniMaxM2DecoderLayer(GradientCheckpointingLayer):
316
- def __init__(self, config: MiniMaxM2Config, layer_idx: int):
317
- super().__init__()
318
- self.hidden_size = config.hidden_size
319
-
320
- self.self_attn = MiniMaxM2Attention(config, layer_idx)
321
-
322
- self.block_sparse_moe = MiniMaxM2SparseMoeBlock(config)
323
- self.input_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
324
- self.post_attention_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
325
-
326
- @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
327
- def forward(
328
- self,
329
- hidden_states: torch.Tensor,
330
- position_embeddings: tuple[torch.Tensor, torch.Tensor],
331
- attention_mask: Optional[torch.Tensor] = None,
332
- position_ids: Optional[torch.LongTensor] = None,
333
- past_key_values: Optional[Cache] = None,
334
- cache_position: Optional[torch.LongTensor] = None,
335
- **kwargs: Unpack[TransformersKwargs],
336
- ) -> torch.FloatTensor:
337
- residual = hidden_states
338
-
339
- hidden_states = self.input_layernorm(hidden_states)
340
-
341
- # Self Attention
342
- hidden_states, _ = self.self_attn(
343
- hidden_states=hidden_states,
344
- position_embeddings=position_embeddings,
345
- attention_mask=attention_mask,
346
- position_ids=position_ids,
347
- past_key_values=past_key_values,
348
- cache_position=cache_position,
349
- **kwargs,
350
- )
351
- hidden_states = residual + hidden_states
352
-
353
- # Fully Connected
354
- residual = hidden_states
355
- hidden_states = self.post_attention_layernorm(hidden_states)
356
- hidden_states, _ = self.block_sparse_moe(hidden_states)
357
- hidden_states = residual + hidden_states
358
-
359
- return hidden_states
360
-
361
-
362
- class MiniMaxM2RotaryEmbedding(nn.Module):
363
- inv_freq: torch.Tensor # fix linting for `register_buffer`
364
-
365
- def __init__(self, config: MiniMaxM2Config, device=None):
366
- super().__init__()
367
- # BC: "rope_type" was originally "type"
368
- if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
369
- self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
370
- else:
371
- self.rope_type = "default"
372
- self.max_seq_len_cached = config.max_position_embeddings
373
- self.original_max_seq_len = config.max_position_embeddings
374
-
375
- self.config = config
376
- self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
377
-
378
- inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
379
- self.register_buffer("inv_freq", inv_freq, persistent=False)
380
- self.original_inv_freq = self.inv_freq
381
-
382
- @torch.no_grad()
383
- @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
384
- def forward(self, x, position_ids):
385
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
386
- position_ids_expanded = position_ids[:, None, :].float()
387
-
388
- device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
389
- with torch.autocast(device_type=device_type, enabled=False): # Force float32
390
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
391
- emb = torch.cat((freqs, freqs), dim=-1)
392
- cos = emb.cos() * self.attention_scaling
393
- sin = emb.sin() * self.attention_scaling
394
-
395
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
396
-
397
-
398
- @auto_docstring
399
- class MiniMaxM2PreTrainedModel(PreTrainedModel):
400
- config: MiniMaxM2Config
401
- base_model_prefix = "model"
402
- supports_gradient_checkpointing = True
403
- _no_split_modules = ["MiniMaxM2DecoderLayer"]
404
- _skip_keys_device_placement = ["past_key_values"]
405
- _supports_flash_attn = True
406
- _supports_sdpa = True
407
- _supports_flex_attn = True
408
- _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
409
- _supports_attention_backend = True
410
- _can_record_outputs = {
411
- "router_logits": OutputRecorder(MiniMaxM2SparseMoeBlock, index=1),
412
- "hidden_states": MiniMaxM2DecoderLayer,
413
- "attentions": MiniMaxM2Attention,
414
- }
415
-
416
-
417
- @auto_docstring
418
- class MiniMaxM2Model(MiniMaxM2PreTrainedModel):
419
- def __init__(self, config: MiniMaxM2Config):
420
- super().__init__(config)
421
- self.padding_idx = config.pad_token_id
422
- self.vocab_size = config.vocab_size
423
-
424
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
425
- self.layers = nn.ModuleList(
426
- [MiniMaxM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
427
- )
428
- self.norm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
429
- self.rotary_emb = MiniMaxM2RotaryEmbedding(config=config)
430
- self.gradient_checkpointing = False
431
-
432
- # Initialize weights and apply final processing
433
- self.post_init()
434
-
435
- @check_model_inputs
436
- @auto_docstring
437
- def forward(
438
- self,
439
- input_ids: Optional[torch.LongTensor] = None,
440
- attention_mask: Optional[torch.Tensor] = None,
441
- position_ids: Optional[torch.LongTensor] = None,
442
- past_key_values: Optional[Cache] = None,
443
- inputs_embeds: Optional[torch.FloatTensor] = None,
444
- use_cache: Optional[bool] = None,
445
- cache_position: Optional[torch.LongTensor] = None,
446
- **kwargs: Unpack[TransformersKwargs],
447
- ) -> MoeModelOutputWithPast:
448
- if (input_ids is None) ^ (inputs_embeds is not None):
449
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
450
-
451
- if use_cache and past_key_values is None:
452
- past_key_values = DynamicCache(config=self.config)
453
-
454
- if inputs_embeds is None:
455
- inputs_embeds = self.embed_tokens(input_ids)
456
-
457
- if cache_position is None:
458
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
459
- cache_position = torch.arange(
460
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
461
- )
462
- if position_ids is None:
463
- position_ids = cache_position.unsqueeze(0)
464
-
465
- mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
466
- causal_mask = mask_function(
467
- config=self.config,
468
- input_embeds=inputs_embeds,
469
- attention_mask=attention_mask,
470
- cache_position=cache_position,
471
- past_key_values=past_key_values,
472
- position_ids=position_ids,
473
- )
474
-
475
- hidden_states = inputs_embeds
476
-
477
- # create position embeddings to be shared across the decoder layers
478
- position_embeddings = self.rotary_emb(hidden_states, position_ids)
479
-
480
- for decoder_layer in self.layers[: self.config.num_hidden_layers]:
481
- hidden_states = decoder_layer(
482
- hidden_states,
483
- position_embeddings=position_embeddings,
484
- attention_mask=causal_mask,
485
- position_ids=position_ids,
486
- past_key_values=past_key_values,
487
- use_cache=use_cache,
488
- cache_position=cache_position,
489
- **kwargs,
490
- )
491
-
492
- hidden_states = self.norm(hidden_states)
493
-
494
- return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
495
- last_hidden_state=hidden_states,
496
- past_key_values=past_key_values,
497
- )
498
-
499
-
500
- def load_balancing_loss_func(
501
- gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
502
- num_experts: Optional[int] = None,
503
- top_k=2,
504
- attention_mask: Optional[torch.Tensor] = None,
505
- ) -> Union[torch.Tensor, int]:
506
- r"""
507
- Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
508
-
509
- See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
510
- function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
511
- experts is too unbalanced.
512
-
513
- Args:
514
- gate_logits:
515
- Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
516
- shape [batch_size X sequence_length, num_experts].
517
- num_experts:
518
- Number of experts
519
- top_k:
520
- The number of experts to route per-token, can be also interpreted as the `top-k` routing
521
- parameter.
522
- attention_mask (`torch.Tensor`, *optional*):
523
- The attention_mask used in forward function
524
- shape [batch_size X sequence_length] if not None.
525
-
526
- Returns:
527
- The auxiliary loss.
528
- """
529
- if gate_logits is None or not isinstance(gate_logits, tuple):
530
- return 0
531
-
532
- if isinstance(gate_logits, tuple):
533
- compute_device = gate_logits[0].device
534
- concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
535
-
536
- routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
537
-
538
- _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
539
-
540
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
541
-
542
- if attention_mask is None:
543
- # Compute the percentage of tokens routed to each experts
544
- tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
545
-
546
- # Compute the average probability of routing to these experts
547
- router_prob_per_expert = torch.mean(routing_weights, dim=0)
548
- else:
549
- batch_size, sequence_length = attention_mask.shape
550
- num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
551
-
552
- # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
553
- expert_attention_mask = (
554
- attention_mask[None, :, :, None, None]
555
- .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
556
- .reshape(-1, top_k, num_experts)
557
- .to(compute_device)
558
- )
559
-
560
- # Compute the percentage of tokens routed to each experts
561
- tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
562
- expert_attention_mask, dim=0
563
- )
564
-
565
- # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
566
- router_per_expert_attention_mask = (
567
- attention_mask[None, :, :, None]
568
- .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
569
- .reshape(-1, num_experts)
570
- .to(compute_device)
571
- )
572
-
573
- # Compute the average probability of routing to these experts
574
- router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
575
- router_per_expert_attention_mask, dim=0
576
- )
577
-
578
- overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
579
- return overall_loss * num_experts
580
-
581
-
582
- @auto_docstring
583
- class MiniMaxM2ForCausalLM(MiniMaxM2PreTrainedModel, GenerationMixin):
584
- _tied_weights_keys = ["lm_head.weight"]
585
- _tp_plan = {"lm_head": "colwise_rep"}
586
- _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
587
-
588
- def __init__(self, config):
589
- super().__init__(config)
590
- self.model = MiniMaxM2Model(config)
591
- self.vocab_size = config.vocab_size
592
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
593
- self.router_aux_loss_coef = config.router_aux_loss_coef
594
- self.num_experts = config.num_local_experts
595
- self.num_experts_per_tok = config.num_experts_per_tok
596
-
597
- # Initialize weights and apply final processing
598
- self.post_init()
599
-
600
- @can_return_tuple
601
- @auto_docstring
602
- def forward(
603
- self,
604
- input_ids: Optional[torch.LongTensor] = None,
605
- attention_mask: Optional[torch.Tensor] = None,
606
- position_ids: Optional[torch.LongTensor] = None,
607
- past_key_values: Optional[Cache] = None,
608
- inputs_embeds: Optional[torch.FloatTensor] = None,
609
- labels: Optional[torch.LongTensor] = None,
610
- use_cache: Optional[bool] = None,
611
- output_router_logits: Optional[bool] = None,
612
- cache_position: Optional[torch.LongTensor] = None,
613
- logits_to_keep: Union[int, torch.Tensor] = 0,
614
- **kwargs: Unpack[TransformersKwargs],
615
- ) -> MoeCausalLMOutputWithPast:
616
- r"""
617
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
618
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
619
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
620
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
621
-
622
- Example:
623
-
624
- ```python
625
- >>> from transformers import AutoTokenizer, MiniMaxM2ForCausalLM
626
-
627
- >>> model = MiniMaxM2ForCausalLM.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1")
628
- >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1")
629
-
630
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
631
- >>> inputs = tokenizer(prompt, return_tensors="pt")
632
-
633
- >>> # Generate
634
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
635
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
636
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
637
- ```"""
638
-
639
- output_router_logits = (
640
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
641
- )
642
-
643
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
644
- outputs: MoeModelOutputWithPast = self.model(
645
- input_ids=input_ids,
646
- attention_mask=attention_mask,
647
- position_ids=position_ids,
648
- past_key_values=past_key_values,
649
- inputs_embeds=inputs_embeds,
650
- use_cache=use_cache,
651
- output_router_logits=output_router_logits,
652
- cache_position=cache_position,
653
- **kwargs,
654
- )
655
-
656
- hidden_states = outputs.last_hidden_state
657
- # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
658
- slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
659
- logits = self.lm_head(hidden_states[:, slice_indices, :])
660
-
661
- loss = None
662
- if labels is not None:
663
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
664
-
665
- aux_loss = None
666
- if output_router_logits:
667
- aux_loss = load_balancing_loss_func(
668
- outputs.router_logits,
669
- self.num_experts,
670
- self.num_experts_per_tok,
671
- attention_mask,
672
- )
673
- if labels is not None:
674
- loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
675
-
676
- return MoeCausalLMOutputWithPast(
677
- loss=loss,
678
- aux_loss=aux_loss,
679
- logits=logits,
680
- past_key_values=outputs.past_key_values,
681
- hidden_states=outputs.hidden_states,
682
- attentions=outputs.attentions,
683
- router_logits=outputs.router_logits,
684
- )
685
-
686
-
687
- class MiniMaxM2ForSequenceClassification(GenericForSequenceClassification, MiniMaxM2PreTrainedModel):
688
- pass
689
-
690
-
691
- class MiniMaxM2ForTokenClassification(GenericForTokenClassification, MiniMaxM2PreTrainedModel):
692
- pass
693
-
694
-
695
- class MiniMaxM2ForQuestionAnswering(GenericForQuestionAnswering, MiniMaxM2PreTrainedModel):
696
- pass
697
-
698
-
699
- __all__ = [
700
- "MiniMaxM2ForCausalLM",
701
- "MiniMaxM2ForQuestionAnswering",
702
- "MiniMaxM2Model",
703
- "MiniMaxM2PreTrainedModel",
704
- "MiniMaxM2ForSequenceClassification",
705
- "MiniMaxM2ForTokenClassification",
706
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer_config.json CHANGED
@@ -490,6 +490,6 @@
490
  "clean_up_tokenization_spaces": false,
491
  "eos_token": "[e~[",
492
  "model_max_length": 40960000,
493
- "tokenizer_class": "GPT2Tokenizer",
494
  "unk_token": "]!d~["
495
  }
 
490
  "clean_up_tokenization_spaces": false,
491
  "eos_token": "[e~[",
492
  "model_max_length": 40960000,
493
+ "tokenizer_class": "TokenizersBackend",
494
  "unk_token": "]!d~["
495
  }