Guide document for function calling (#10)
Browse files- Added the functional guidance document for MiniMax-VL-01 function call, which provides a detailed introduction to the definition, examples, input format, and output processing of the function call, helping users understand how to use this function. (ad3e7ea8d686ab5526e440660bcb89562604f103)
- MiniMax-VL-01_Function_Call_Guide.md +335 -0
- MiniMax-VL-01_Function_Call_Guide_CN.md +335 -0
- README.md +9 -1
- tokenizer_config.json +1 -1
MiniMax-VL-01_Function_Call_Guide.md
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MiniMax-VL-01 Function Call Guide
|
| 2 |
+
|
| 3 |
+
## 📖 Introduction
|
| 4 |
+
|
| 5 |
+
MiniMax-VL-01 model supports function calling capability, allowing the model to identify when an external function needs to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-VL-01.
|
| 6 |
+
|
| 7 |
+
## 🛠️ Defining Function Calls
|
| 8 |
+
|
| 9 |
+
### Function Structure
|
| 10 |
+
|
| 11 |
+
Function calls need to be defined in the `tools` field of the request body. Each function consists of:
|
| 12 |
+
|
| 13 |
+
```json
|
| 14 |
+
{
|
| 15 |
+
"tools": [
|
| 16 |
+
{
|
| 17 |
+
"type": "function",
|
| 18 |
+
"function": {
|
| 19 |
+
"name": "function_name", // Function name, required
|
| 20 |
+
"description": "function_description", // Brief description of the function's purpose
|
| 21 |
+
"parameters": { // Parameter definition in JSON Schema format
|
| 22 |
+
"type": "object", // Overall type, fixed as "object"
|
| 23 |
+
"properties": { // Parameter property object
|
| 24 |
+
"param_name": { // Parameter name
|
| 25 |
+
"description": "Parameter description", // Description
|
| 26 |
+
"type": "string|number|boolean|array|object" // Type
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"required": ["param1", "param2"] // List of required parameters
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
]
|
| 34 |
+
}
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### Example
|
| 38 |
+
|
| 39 |
+
Below is a simple example of a weather query function definition:
|
| 40 |
+
|
| 41 |
+
```json
|
| 42 |
+
"tools": [
|
| 43 |
+
{
|
| 44 |
+
"type": "function",
|
| 45 |
+
"function": {
|
| 46 |
+
"name": "get_current_weather",
|
| 47 |
+
"description": "Get the latest weather for a location",
|
| 48 |
+
"parameters": {
|
| 49 |
+
"type": "object",
|
| 50 |
+
"properties": {
|
| 51 |
+
"location": {
|
| 52 |
+
"type": "string",
|
| 53 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 54 |
+
}
|
| 55 |
+
},
|
| 56 |
+
"required": ["location"]
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### Complete Request Example
|
| 64 |
+
|
| 65 |
+
Below is a complete Python code example that includes function definitions:
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
payload = json.dumps({
|
| 69 |
+
"model": "MiniMax-VL-01",
|
| 70 |
+
"messages": [
|
| 71 |
+
{
|
| 72 |
+
"role": "system",
|
| 73 |
+
"content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models."
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"role": "user",
|
| 77 |
+
"content": "What's the weather like in Shanghai today?"
|
| 78 |
+
}
|
| 79 |
+
],
|
| 80 |
+
"tools": [
|
| 81 |
+
{
|
| 82 |
+
"type": "function",
|
| 83 |
+
"function": {
|
| 84 |
+
"name": "get_current_weather",
|
| 85 |
+
"description": "Get the latest weather for a location",
|
| 86 |
+
"parameters": {
|
| 87 |
+
"type": "object",
|
| 88 |
+
"properties": {
|
| 89 |
+
"location": {
|
| 90 |
+
"type": "string",
|
| 91 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 92 |
+
}
|
| 93 |
+
},
|
| 94 |
+
"required": ["location"]
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
+
"tool_choice": "auto",
|
| 100 |
+
"stream": True,
|
| 101 |
+
"max_tokens": 10000,
|
| 102 |
+
"temperature": 0.9,
|
| 103 |
+
"top_p": 1
|
| 104 |
+
})
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## 🔄 Function Call Input Format
|
| 108 |
+
|
| 109 |
+
When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
|
| 110 |
+
|
| 111 |
+
```
|
| 112 |
+
<beginning_of_sentence>system function_setting=functions
|
| 113 |
+
{"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}}<end_of_sentence>
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
Important notes:
|
| 117 |
+
1. Function definitions are placed after the system settings and before the conversation data
|
| 118 |
+
2. Function definitions are marked with `function_setting=functions`
|
| 119 |
+
3. Each function is defined as a JSON string
|
| 120 |
+
4. The area ends with `<end_of_sentence>`
|
| 121 |
+
|
| 122 |
+
## 📤 Model Function Call Output
|
| 123 |
+
|
| 124 |
+
When the model decides to call a function, it outputs the function call information in a special format:
|
| 125 |
+
|
| 126 |
+
````
|
| 127 |
+
<function_call>```typescript
|
| 128 |
+
functions.get_current_weather({"location": "Shanghai"})
|
| 129 |
+
```
|
| 130 |
+
````
|
| 131 |
+
|
| 132 |
+
"<function_call>" is a special token, followed by "functions.function_name(parameter json structure)". The parameters need to be string-matched and executed externally.
|
| 133 |
+
|
| 134 |
+
## 📥 Handling Function Results
|
| 135 |
+
|
| 136 |
+
After a function is successfully executed, the model will return output in the following format:
|
| 137 |
+
|
| 138 |
+
````typescript
|
| 139 |
+
```typescript
|
| 140 |
+
functions.get_current_weather({"location": "Shanghai"})
|
| 141 |
+
```
|
| 142 |
+
````
|
| 143 |
+
|
| 144 |
+
You can use the following regular expression method to extract the function name and parameters for subsequent processing:
|
| 145 |
+
|
| 146 |
+
````python
|
| 147 |
+
def parse_function_calls(content: str):
|
| 148 |
+
"""
|
| 149 |
+
Parse the function call content returned by the model, extract function name and parameters
|
| 150 |
+
|
| 151 |
+
Parameters:
|
| 152 |
+
content: The original content string returned by the model
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
A dictionary of parsed function call information, including function name and parameters
|
| 156 |
+
"""
|
| 157 |
+
# Match typescript code block
|
| 158 |
+
pattern = r"```typescript\n(.+?)?\n```"
|
| 159 |
+
matches = re.finditer(pattern, content, re.DOTALL)
|
| 160 |
+
|
| 161 |
+
for match in matches:
|
| 162 |
+
function_code = match.group(1)
|
| 163 |
+
# Extract function name and parameters
|
| 164 |
+
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
|
| 165 |
+
|
| 166 |
+
if not function_match:
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
function_name = function_match.group(1)
|
| 170 |
+
arguments_str = function_match.group(2)
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
# Parse parameter JSON
|
| 174 |
+
arguments = json.loads(arguments_str)
|
| 175 |
+
print(f"Function call: {function_name}, Parameters: {arguments}")
|
| 176 |
+
|
| 177 |
+
# Example: Handle weather query function
|
| 178 |
+
if function_name == "get_current_weather":
|
| 179 |
+
location = arguments.get("location", "Unknown location")
|
| 180 |
+
# Build function execution result
|
| 181 |
+
return {
|
| 182 |
+
"role": "function",
|
| 183 |
+
"name": function_name,
|
| 184 |
+
"text": json.dumps({
|
| 185 |
+
"location": location,
|
| 186 |
+
"temperature": "25",
|
| 187 |
+
"unit": "celsius",
|
| 188 |
+
"weather": "Sunny"
|
| 189 |
+
}, ensure_ascii=False)
|
| 190 |
+
}
|
| 191 |
+
except json.JSONDecodeError as e:
|
| 192 |
+
print(f"Parameter parsing failed: {arguments_str}, Error: {e}")
|
| 193 |
+
|
| 194 |
+
return {}
|
| 195 |
+
````
|
| 196 |
+
|
| 197 |
+
After successfully parsing the function call, you should add the function execution result to the conversation history so that the model can access and utilize this information in subsequent interactions.
|
| 198 |
+
|
| 199 |
+
## 💻 Function Call Example with Transformers Library
|
| 200 |
+
|
| 201 |
+
The official MiniMax-VL-01 repository provides a complete example of function calling using the Transformers library. You can view the source code in the [MiniMaxAI/MiniMax-VL-01 huggingface repository](https://huggingface.co/MiniMaxAI/MiniMax-VL-01/blob/main/main.py).
|
| 202 |
+
|
| 203 |
+
The following is the key part of implementing function calls using the Transformers library:
|
| 204 |
+
|
| 205 |
+
```python
|
| 206 |
+
def get_default_tools():
|
| 207 |
+
return [
|
| 208 |
+
{
|
| 209 |
+
"type": "function",
|
| 210 |
+
"function": {
|
| 211 |
+
"name": "get_current_weather",
|
| 212 |
+
"description": "Get the latest weather for a location",
|
| 213 |
+
"parameters": {
|
| 214 |
+
"type": "object",
|
| 215 |
+
"properties": {
|
| 216 |
+
"location": {
|
| 217 |
+
"type": "string",
|
| 218 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 219 |
+
}
|
| 220 |
+
},
|
| 221 |
+
"required": ["location"]
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
# Load model and tokenizer
|
| 228 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 229 |
+
prompt = "What's the weather like in Shanghai today?"
|
| 230 |
+
messages = [
|
| 231 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-VL-01 model."}]},
|
| 232 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
# Enable function call tools
|
| 236 |
+
tools = get_default_tools()
|
| 237 |
+
|
| 238 |
+
# Apply chat template and add tool definitions
|
| 239 |
+
text = tokenizer.apply_chat_template(
|
| 240 |
+
messages,
|
| 241 |
+
tokenize=False,
|
| 242 |
+
add_generation_prompt=True,
|
| 243 |
+
tools=tools
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Generate response
|
| 247 |
+
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
| 248 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
| 249 |
+
model_id,
|
| 250 |
+
torch_dtype="bfloat16",
|
| 251 |
+
device_map=device_map,
|
| 252 |
+
quantization_config=quantization_config,
|
| 253 |
+
trust_remote_code=True,
|
| 254 |
+
offload_buffers=True,
|
| 255 |
+
)
|
| 256 |
+
generation_config = GenerationConfig(
|
| 257 |
+
max_new_tokens=20,
|
| 258 |
+
eos_token_id=200020,
|
| 259 |
+
use_cache=True,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Execute generation
|
| 263 |
+
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
|
| 264 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
### Running the Example
|
| 268 |
+
|
| 269 |
+
You can run the example code using the following command:
|
| 270 |
+
|
| 271 |
+
```bash
|
| 272 |
+
export SAFETENSORS_FAST_GPU=1
|
| 273 |
+
python main.py --quant_type int8 --world_size 8 --model_id <model_path> --enable_tools
|
| 274 |
+
```
|
| 275 |
+
|
| 276 |
+
Parameter description:
|
| 277 |
+
- `--quant_type`: Quantization type, options are "default" or "int8"
|
| 278 |
+
- `--world_size`: Number of GPUs, int8 quantization requires at least 8 GPUs
|
| 279 |
+
- `--model_id`: Model path
|
| 280 |
+
- `--enable_tools`: Enable function call feature
|
| 281 |
+
|
| 282 |
+
### Result Processing
|
| 283 |
+
As expected, you will get the following output:
|
| 284 |
+
|
| 285 |
+
````base
|
| 286 |
+
```typescript
|
| 287 |
+
functions.get_current_weather({"location": "Shanghai"})
|
| 288 |
+
```
|
| 289 |
+
````
|
| 290 |
+
|
| 291 |
+
You can use regular expressions to extract the function to call and its corresponding parameters:
|
| 292 |
+
|
| 293 |
+
````python
|
| 294 |
+
def try_parse_tool_calls(content: str):
|
| 295 |
+
pattern = r"```typescript\n(.+?)?\n```"
|
| 296 |
+
matches = re.finditer(pattern, content, re.DOTALL)
|
| 297 |
+
|
| 298 |
+
for match in matches:
|
| 299 |
+
function_code = match.group(1)
|
| 300 |
+
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
|
| 301 |
+
|
| 302 |
+
if not function_match:
|
| 303 |
+
continue
|
| 304 |
+
|
| 305 |
+
function_name = function_match.group(1)
|
| 306 |
+
arguments_str = function_match.group(2)
|
| 307 |
+
|
| 308 |
+
try:
|
| 309 |
+
arguments = json.loads(arguments_str)
|
| 310 |
+
print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]")
|
| 311 |
+
|
| 312 |
+
if function_name == "get_current_weather":
|
| 313 |
+
location = arguments.get("location", "Unknown")
|
| 314 |
+
return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'}
|
| 315 |
+
except json.JSONDecodeError as e:
|
| 316 |
+
print(f"Failed parse tools: {arguments_str}, Error: {e}")
|
| 317 |
+
|
| 318 |
+
return {}
|
| 319 |
+
````
|
| 320 |
+
|
| 321 |
+
### Chat Template
|
| 322 |
+
|
| 323 |
+
MiniMax-VL-01 uses a specific chat template format to process function calls. The chat template is defined in `tokenizer_config.json`:
|
| 324 |
+
|
| 325 |
+
```json
|
| 326 |
+
"{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\n' + function | tojson + '<end_of_sentence>\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% generation %}{% endgeneration %}{% endif %}"
|
| 327 |
+
```
|
| 328 |
+
|
| 329 |
+
## 📝 Important Notes
|
| 330 |
+
|
| 331 |
+
1. Function names should follow programming language naming conventions and avoid special characters
|
| 332 |
+
2. Parameter descriptions should be concise and help the model understand the parameter's purpose and constraints
|
| 333 |
+
3. The model does not guarantee that it will call a function; this depends on the user's input and the model's judgment
|
| 334 |
+
4. Function results should be returned in a structured format for easy processing by the model
|
| 335 |
+
5. The model might not call a function even if one is provided, depending on whether it determines a function call is appropriate for the given user query
|
MiniMax-VL-01_Function_Call_Guide_CN.md
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MiniMax-Text-01 函数调用(Function Call)功能指南
|
| 2 |
+
|
| 3 |
+
## 📖 简介
|
| 4 |
+
|
| 5 |
+
MiniMax-Text-01 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-Text-01 的函数调用功能。
|
| 6 |
+
|
| 7 |
+
## 🛠️ 函数调用的定义
|
| 8 |
+
|
| 9 |
+
### 函数结构体
|
| 10 |
+
|
| 11 |
+
函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成:
|
| 12 |
+
|
| 13 |
+
```json
|
| 14 |
+
{
|
| 15 |
+
"tools": [
|
| 16 |
+
{
|
| 17 |
+
"type": "function",
|
| 18 |
+
"function": {
|
| 19 |
+
"name": "function_name", // 函数名称,必填
|
| 20 |
+
"description": "function_description", // 函数描述,应简明扼要说明函数功能
|
| 21 |
+
"parameters": { // 函数参数定义,符合 JSON Schema 格式
|
| 22 |
+
"type": "object", // 参数整体类型,固定为object
|
| 23 |
+
"properties": { // 参数属性对象
|
| 24 |
+
"param_name": { // 参数名称
|
| 25 |
+
"description": "参数描述", // 参数说明
|
| 26 |
+
"type": "string|number|boolean|array|object" // 参数类型
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"required": ["param1", "param2"] // 必填参数列表
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
]
|
| 34 |
+
}
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### 示例
|
| 38 |
+
|
| 39 |
+
以下是一个简单的天气查询函数定义示例:
|
| 40 |
+
|
| 41 |
+
```json
|
| 42 |
+
"tools": [
|
| 43 |
+
{
|
| 44 |
+
"type": "function",
|
| 45 |
+
"function": {
|
| 46 |
+
"name": "get_current_weather",
|
| 47 |
+
"description": "Get the latest weather for a location",
|
| 48 |
+
"parameters": {
|
| 49 |
+
"type": "object",
|
| 50 |
+
"properties": {
|
| 51 |
+
"location": {
|
| 52 |
+
"type": "string",
|
| 53 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 54 |
+
}
|
| 55 |
+
},
|
| 56 |
+
"required": ["location"]
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### 完整请求示例
|
| 64 |
+
|
| 65 |
+
下面是一个包含函数定义的完整Python代码示例:
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
payload = json.dumps({
|
| 69 |
+
"model": "MiniMax-VL-01",
|
| 70 |
+
"messages": [
|
| 71 |
+
{
|
| 72 |
+
"role": "system",
|
| 73 |
+
"content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models."
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"role": "user",
|
| 77 |
+
"content": "上海今天天气怎么样?"
|
| 78 |
+
}
|
| 79 |
+
],
|
| 80 |
+
"tools": [
|
| 81 |
+
{
|
| 82 |
+
"type": "function",
|
| 83 |
+
"function": {
|
| 84 |
+
"name": "get_current_weather",
|
| 85 |
+
"description": "Get the latest weather for a location",
|
| 86 |
+
"parameters": {
|
| 87 |
+
"type": "object",
|
| 88 |
+
"properties": {
|
| 89 |
+
"location": {
|
| 90 |
+
"type": "string",
|
| 91 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 92 |
+
}
|
| 93 |
+
},
|
| 94 |
+
"required": ["location"]
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
+
"tool_choice": "auto",
|
| 100 |
+
"stream": True,
|
| 101 |
+
"max_tokens": 10000,
|
| 102 |
+
"temperature": 0.9,
|
| 103 |
+
"top_p": 1
|
| 104 |
+
})
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## 🔄 函数调用的输入格式
|
| 108 |
+
|
| 109 |
+
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
|
| 110 |
+
|
| 111 |
+
```
|
| 112 |
+
<beginning_of_sentence>system function_setting=functions
|
| 113 |
+
{"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}}<end_of_sentence>
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
注意事项:
|
| 117 |
+
1. 函数定义位于系统设置之后、对话数据之前
|
| 118 |
+
2. 使用 `function_setting=functions` 标记函数定义区域
|
| 119 |
+
3. 每个函数定义使用JSON字符串表示
|
| 120 |
+
4. 区域以 `<end_of_sentence>` 结束
|
| 121 |
+
|
| 122 |
+
## 📤 模型的函数调用输出
|
| 123 |
+
|
| 124 |
+
当模型决定调用函数时,它会在响应中使用特殊格式输出函数调用信息:
|
| 125 |
+
|
| 126 |
+
````
|
| 127 |
+
<function_call>```typescript
|
| 128 |
+
functions.get_current_weather({"location": "上海"})
|
| 129 |
+
```
|
| 130 |
+
````
|
| 131 |
+
|
| 132 |
+
"<function_call>" 是 special token, 后面的 "functions.函数名(参数 json 结构体)", 需要字符串匹配出参数, 交外部执行.
|
| 133 |
+
|
| 134 |
+
## 📥 函数执行结果的处理
|
| 135 |
+
|
| 136 |
+
当函数调用成功执行后,模型将返回以下格式的输出:
|
| 137 |
+
|
| 138 |
+
````typescript
|
| 139 |
+
```typescript
|
| 140 |
+
functions.get_current_weather({"location": "Shanghai"})
|
| 141 |
+
```
|
| 142 |
+
````
|
| 143 |
+
|
| 144 |
+
您可以使用以下正则表达式方法提取函数名称和参数,便于后续处理:
|
| 145 |
+
|
| 146 |
+
````python
|
| 147 |
+
def parse_function_calls(content: str):
|
| 148 |
+
"""
|
| 149 |
+
解析模型返回的函数调用内容,提取函数名和参数
|
| 150 |
+
|
| 151 |
+
参数:
|
| 152 |
+
content: 模型返回的原始内容字符串
|
| 153 |
+
|
| 154 |
+
返回:
|
| 155 |
+
解析后的函数调用信息字典,包含函数名和参数
|
| 156 |
+
"""
|
| 157 |
+
# 匹配 typescript 代码块
|
| 158 |
+
pattern = r"```typescript\n(.+?)?\n```"
|
| 159 |
+
matches = re.finditer(pattern, content, re.DOTALL)
|
| 160 |
+
|
| 161 |
+
for match in matches:
|
| 162 |
+
function_code = match.group(1)
|
| 163 |
+
# 提取函数名和参数
|
| 164 |
+
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
|
| 165 |
+
|
| 166 |
+
if not function_match:
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
function_name = function_match.group(1)
|
| 170 |
+
arguments_str = function_match.group(2)
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
# 解析参数JSON
|
| 174 |
+
arguments = json.loads(arguments_str)
|
| 175 |
+
print(f"调用函数: {function_name}, 参数: {arguments}")
|
| 176 |
+
|
| 177 |
+
# 示例: 处理天气查询函数
|
| 178 |
+
if function_name == "get_current_weather":
|
| 179 |
+
location = arguments.get("location", "未知位置")
|
| 180 |
+
# 构建函数执行结果
|
| 181 |
+
return {
|
| 182 |
+
"role": "function",
|
| 183 |
+
"name": function_name,
|
| 184 |
+
"text": json.dumps({
|
| 185 |
+
"location": location,
|
| 186 |
+
"temperature": "25",
|
| 187 |
+
"unit": "celsius",
|
| 188 |
+
"weather": "晴朗"
|
| 189 |
+
}, ensure_ascii=False)
|
| 190 |
+
}
|
| 191 |
+
except json.JSONDecodeError as e:
|
| 192 |
+
print(f"参数解析失败: {arguments_str}, 错误: {e}")
|
| 193 |
+
|
| 194 |
+
return {}
|
| 195 |
+
````
|
| 196 |
+
|
| 197 |
+
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
|
| 198 |
+
|
| 199 |
+
## 💻 使用 Transformers 库的函数调用示例
|
| 200 |
+
|
| 201 |
+
MiniMax-VL-01 官方仓库提供了使用 Transformers 库进行函数调用的完整示例。您可以在 [MiniMaxAI/MiniMax-VL-01 huggingface 仓库](https://huggingface.co/MiniMaxAI/MiniMax-VL-01/blob/main/main.py) 中查看源代码。
|
| 202 |
+
|
| 203 |
+
以下是使用 Transformers 库实现函数调用的关键部分:
|
| 204 |
+
|
| 205 |
+
```python
|
| 206 |
+
def get_default_tools():
|
| 207 |
+
return [
|
| 208 |
+
{
|
| 209 |
+
"type": "function",
|
| 210 |
+
"function": {
|
| 211 |
+
"name": "get_current_weather",
|
| 212 |
+
"description": "Get the latest weather for a location",
|
| 213 |
+
"parameters": {
|
| 214 |
+
"type": "object",
|
| 215 |
+
"properties": {
|
| 216 |
+
"location": {
|
| 217 |
+
"type": "string",
|
| 218 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 219 |
+
}
|
| 220 |
+
},
|
| 221 |
+
"required": ["location"]
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
# 加载模型和分词器
|
| 228 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 229 |
+
prompt = "What's the weather like in Shanghai today?"
|
| 230 |
+
messages = [
|
| 231 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
|
| 232 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
# 启用函数调用工具
|
| 236 |
+
tools = get_default_tools()
|
| 237 |
+
|
| 238 |
+
# 应用聊天模板,并加入工具定义
|
| 239 |
+
text = tokenizer.apply_chat_template(
|
| 240 |
+
messages,
|
| 241 |
+
tokenize=False,
|
| 242 |
+
add_generation_prompt=True,
|
| 243 |
+
tools=tools
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# 生成回复
|
| 247 |
+
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
| 248 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
| 249 |
+
model_id,
|
| 250 |
+
torch_dtype="bfloat16",
|
| 251 |
+
device_map=device_map,
|
| 252 |
+
quantization_config=quantization_config,
|
| 253 |
+
trust_remote_code=True,
|
| 254 |
+
offload_buffers=True,
|
| 255 |
+
)
|
| 256 |
+
generation_config = GenerationConfig(
|
| 257 |
+
max_new_tokens=20,
|
| 258 |
+
eos_token_id=200020,
|
| 259 |
+
use_cache=True,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# 执行生成
|
| 263 |
+
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
|
| 264 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
### 运行方式
|
| 268 |
+
|
| 269 |
+
您可以通过以下命令运行示例代码:
|
| 270 |
+
|
| 271 |
+
```bash
|
| 272 |
+
export SAFETENSORS_FAST_GPU=1
|
| 273 |
+
python main.py --quant_type int8 --world_size 8 --model_id <model_path> --enable_tools
|
| 274 |
+
```
|
| 275 |
+
|
| 276 |
+
参数说明:
|
| 277 |
+
- `--quant_type`: 量化类型,可选 "default" 或 "int8"
|
| 278 |
+
- `--world_size`: GPU 数量,int8 量化至少需要 8 个 GPU
|
| 279 |
+
- `--model_id`: 模型路径
|
| 280 |
+
- `--enable_tools`: 启用函数调用功能
|
| 281 |
+
|
| 282 |
+
### 结果处理
|
| 283 |
+
符合预期的情况下,你将得到以下输出
|
| 284 |
+
|
| 285 |
+
````base
|
| 286 |
+
```typescript
|
| 287 |
+
functions.get_current_weather({"location": "Shanghai"})
|
| 288 |
+
```
|
| 289 |
+
````
|
| 290 |
+
|
| 291 |
+
你可以使用正则表达式提取出需要调用的 function 和 对应的参数
|
| 292 |
+
|
| 293 |
+
````python
|
| 294 |
+
def try_parse_tool_calls(content: str):
|
| 295 |
+
pattern = r"```typescript\n(.+?)?\n```"
|
| 296 |
+
matches = re.finditer(pattern, content, re.DOTALL)
|
| 297 |
+
|
| 298 |
+
for match in matches:
|
| 299 |
+
function_code = match.group(1)
|
| 300 |
+
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
|
| 301 |
+
|
| 302 |
+
if not function_match:
|
| 303 |
+
continue
|
| 304 |
+
|
| 305 |
+
function_name = function_match.group(1)
|
| 306 |
+
arguments_str = function_match.group(2)
|
| 307 |
+
|
| 308 |
+
try:
|
| 309 |
+
arguments = json.loads(arguments_str)
|
| 310 |
+
print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]")
|
| 311 |
+
|
| 312 |
+
if function_name == "get_current_weather":
|
| 313 |
+
location = arguments.get("location", "Unknown")
|
| 314 |
+
return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'}
|
| 315 |
+
except json.JSONDecodeError as e:
|
| 316 |
+
print(f"Failed parse tools: {arguments_str}, Error: {e}")
|
| 317 |
+
|
| 318 |
+
return {}
|
| 319 |
+
````
|
| 320 |
+
|
| 321 |
+
### 聊天模板
|
| 322 |
+
|
| 323 |
+
MiniMax-VL-01 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中:
|
| 324 |
+
|
| 325 |
+
```json
|
| 326 |
+
"{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\n' + function | tojson + '<end_of_sentence>\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% generation %}{% endgeneration %}{% endif %}"
|
| 327 |
+
|
| 328 |
+
```
|
| 329 |
+
|
| 330 |
+
## 📝 注意事项
|
| 331 |
+
|
| 332 |
+
1. 函数名称应当遵循编程语言的命名规范,避免使用特殊字符
|
| 333 |
+
2. 参数描述应当简洁明了,帮助模型理解参数的用途和约束
|
| 334 |
+
3. 模型并不保证每次都会调用函数,这取决于用户的输入和模型的判断
|
| 335 |
+
4. 函数调用结果应当以结构化方式返回,便于模型理解和处理
|
README.md
CHANGED
|
@@ -184,7 +184,15 @@ generated_ids = [
|
|
| 184 |
response = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 185 |
```
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
```
|
| 190 |
@misc{minimax2025minimax01scalingfoundationmodels,
|
|
|
|
| 184 |
response = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 185 |
```
|
| 186 |
|
| 187 |
+
## 4. Deployment Guide
|
| 188 |
+
For production deployment, we recommend using [vLLM](https://docs.vllm.ai/en/latest/) to serve MiniMax-VL-01. vLLM provides excellent performance for serving large language models with the following features:
|
| 189 |
+
🔥 Outstanding service throughput performance
|
| 190 |
+
⚡ Efficient and intelligent memory management
|
| 191 |
+
📦 Powerful batch request processing capability
|
| 192 |
+
⚙️ Deeply optimized underlying performance
|
| 193 |
+
For detailed deployment instructions, please refer to our [vLLM Deployment Guide](https://github.com/MiniMax-AI/MiniMax-01/blob/main/docs/vllm_deployment_guild.md).
|
| 194 |
+
|
| 195 |
+
# 5. Citation
|
| 196 |
|
| 197 |
```
|
| 198 |
@misc{minimax2025minimax01scalingfoundationmodels,
|
tokenizer_config.json
CHANGED
|
@@ -6,5 +6,5 @@
|
|
| 6 |
"model_max_length": 40960000,
|
| 7 |
"tokenizer_class": "GPT2Tokenizer",
|
| 8 |
"unk_token": "<end_of_document>",
|
| 9 |
-
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% endfor %}{{ '<beginning_of_sentence>ai name=assistant\n' }}"
|
| 10 |
}
|
|
|
|
| 6 |
"model_max_length": 40960000,
|
| 7 |
"tokenizer_class": "GPT2Tokenizer",
|
| 8 |
"unk_token": "<end_of_document>",
|
| 9 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\n' }}{% for item in message['content'] %}{% if item.type == 'image' %}<image>{% elif item.type == 'text' %}{{ item.text }}{% endif %}{% endfor %}{{ '<end_of_sentence>\n' }}{% endif %}{% if message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\n' + function | tojson + '<end_of_sentence>\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\n' }}{% generation %}{% endgeneration %}{% endif %}"
|
| 10 |
}
|