Upload run_benchmarks.py with huggingface_hub
Browse files- run_benchmarks.py +377 -0
run_benchmarks.py
ADDED
|
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Benchmark Runner for Summarizer-Standard Model
|
| 4 |
+
|
| 5 |
+
Evaluates summarization performance using ROUGE scores, semantic similarity,
|
| 6 |
+
latency, and model size metrics.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import json
|
| 10 |
+
import time
|
| 11 |
+
import yaml
|
| 12 |
+
import argparse
|
| 13 |
+
import requests
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from datetime import datetime
|
| 16 |
+
import numpy as np
|
| 17 |
+
import re
|
| 18 |
+
|
| 19 |
+
class SummarizerStandardBenchmarkRunner:
|
| 20 |
+
def __init__(self, config_path: str):
|
| 21 |
+
self.config = self._load_config(config_path)
|
| 22 |
+
self.results = {
|
| 23 |
+
"model": "Summarizer-Standard",
|
| 24 |
+
"timestamp": datetime.now().isoformat(),
|
| 25 |
+
"datasets": {},
|
| 26 |
+
"overall_metrics": {}
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# No external evaluation tools needed - using simple metrics
|
| 30 |
+
|
| 31 |
+
def _load_config(self, config_path: str) -> dict:
|
| 32 |
+
with open(config_path, 'r') as f:
|
| 33 |
+
return yaml.safe_load(f)
|
| 34 |
+
|
| 35 |
+
def _load_dataset(self, dataset_path: str, sample_size: int) -> list:
|
| 36 |
+
dataset_file = Path(dataset_path)
|
| 37 |
+
if not dataset_file.exists():
|
| 38 |
+
print(f"⚠️ Dataset not found: {dataset_file}")
|
| 39 |
+
return []
|
| 40 |
+
|
| 41 |
+
with open(dataset_file, 'r') as f:
|
| 42 |
+
data = [json.loads(line) for line in f]
|
| 43 |
+
|
| 44 |
+
return data[:sample_size]
|
| 45 |
+
|
| 46 |
+
def _call_model(self, text: str) -> tuple:
|
| 47 |
+
instruction = self.config["datasets"][0]["instruction"]
|
| 48 |
+
prompt = f"{instruction}\n\nInput: {text}\n\nSummary:"
|
| 49 |
+
|
| 50 |
+
payload = {
|
| 51 |
+
"prompt": prompt,
|
| 52 |
+
"max_tokens": self.config["model"]["max_tokens"],
|
| 53 |
+
"temperature": self.config["model"]["temperature"]
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
headers = {'Content-Type': 'application/json'}
|
| 57 |
+
start_time = time.time()
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
response = requests.post(
|
| 61 |
+
f"{self.config['model']['base_url']}/completion",
|
| 62 |
+
json=payload, headers=headers, timeout=self.config["model"]["timeout"]
|
| 63 |
+
)
|
| 64 |
+
latency = time.time() - start_time
|
| 65 |
+
|
| 66 |
+
if response.status_code == 200:
|
| 67 |
+
return response.json()["content"], latency
|
| 68 |
+
else:
|
| 69 |
+
return f"Error: {response.status_code}", latency
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return f"Error: {e}", time.time() - start_time
|
| 72 |
+
|
| 73 |
+
def _calculate_rouge_scores(self, predicted: str, expected: str) -> dict:
|
| 74 |
+
"""Calculate simple ROUGE-style n-gram overlap scores"""
|
| 75 |
+
def get_ngrams(text, n):
|
| 76 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
| 77 |
+
return set([tuple(words[i:i+n]) for i in range(len(words)-n+1)])
|
| 78 |
+
|
| 79 |
+
pred_words = re.findall(r'\b\w+\b', predicted.lower())
|
| 80 |
+
exp_words = re.findall(r'\b\w+\b', expected.lower())
|
| 81 |
+
|
| 82 |
+
# ROUGE-1: unigram overlap
|
| 83 |
+
pred_1grams = set(pred_words)
|
| 84 |
+
exp_1grams = set(exp_words)
|
| 85 |
+
rouge1_prec = len(pred_1grams & exp_1grams) / max(len(pred_1grams), 1)
|
| 86 |
+
rouge1_rec = len(pred_1grams & exp_1grams) / max(len(exp_1grams), 1)
|
| 87 |
+
rouge1 = 2 * rouge1_prec * rouge1_rec / max(rouge1_prec + rouge1_rec, 1e-10)
|
| 88 |
+
|
| 89 |
+
# ROUGE-2: bigram overlap
|
| 90 |
+
pred_2grams = get_ngrams(predicted, 2)
|
| 91 |
+
exp_2grams = get_ngrams(expected, 2)
|
| 92 |
+
rouge2_prec = len(pred_2grams & exp_2grams) / max(len(pred_2grams), 1)
|
| 93 |
+
rouge2_rec = len(pred_2grams & exp_2grams) / max(len(exp_2grams), 1)
|
| 94 |
+
rouge2 = 2 * rouge2_prec * rouge2_rec / max(rouge2_prec + rouge2_rec, 1e-10)
|
| 95 |
+
|
| 96 |
+
# Simple ROUGE-L approximation (longest common subsequence ratio)
|
| 97 |
+
# For simplicity, use word overlap ratio as approximation
|
| 98 |
+
rougeL = len(pred_1grams & exp_1grams) / max(len(exp_1grams), 1)
|
| 99 |
+
|
| 100 |
+
return {
|
| 101 |
+
'rouge1': rouge1,
|
| 102 |
+
'rouge2': rouge2,
|
| 103 |
+
'rougeL': rougeL
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
def _calculate_semantic_similarity(self, text1: str, text2: str) -> float:
|
| 107 |
+
"""Calculate simple word overlap similarity (Jaccard similarity)"""
|
| 108 |
+
try:
|
| 109 |
+
words1 = set(re.findall(r'\b\w+\b', text1.lower()))
|
| 110 |
+
words2 = set(re.findall(r'\b\w+\b', text2.lower()))
|
| 111 |
+
|
| 112 |
+
if not words1 and not words2:
|
| 113 |
+
return 1.0
|
| 114 |
+
if not words1 or not words2:
|
| 115 |
+
return 0.0
|
| 116 |
+
|
| 117 |
+
intersection = len(words1 & words2)
|
| 118 |
+
union = len(words1 | words2)
|
| 119 |
+
return intersection / union
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Warning: Similarity calculation failed: {e}")
|
| 122 |
+
return 0.0
|
| 123 |
+
|
| 124 |
+
def _calculate_compression_ratio(self, input_text: str, summary: str) -> float:
|
| 125 |
+
"""Calculate compression ratio (summary length / input length)"""
|
| 126 |
+
input_words = len(input_text.split())
|
| 127 |
+
summary_words = len(summary.split())
|
| 128 |
+
return summary_words / max(input_words, 1)
|
| 129 |
+
|
| 130 |
+
def _run_dataset_benchmark(self, dataset_name: str, dataset_config: dict) -> dict:
|
| 131 |
+
print(f"📊 Running benchmark on {dataset_name}...")
|
| 132 |
+
|
| 133 |
+
dataset = self._load_dataset(dataset_config["file"], dataset_config["sample_size"])
|
| 134 |
+
if not dataset:
|
| 135 |
+
return {"error": f"No data found for {dataset_name}"}
|
| 136 |
+
|
| 137 |
+
results = {
|
| 138 |
+
"sample_count": len(dataset),
|
| 139 |
+
"rouge1_scores": [],
|
| 140 |
+
"rouge2_scores": [],
|
| 141 |
+
"rougeL_scores": [],
|
| 142 |
+
"semantic_similarity": [],
|
| 143 |
+
"compression_ratios": [],
|
| 144 |
+
"latency_ms": [],
|
| 145 |
+
"successful_predictions": 0,
|
| 146 |
+
"examples": [] # Store actual input/output examples
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
for i, item in enumerate(dataset):
|
| 150 |
+
if i % 10 == 0: # Progress update every 10 samples
|
| 151 |
+
print(f" Processing sample {i+1}/{len(dataset)}")
|
| 152 |
+
|
| 153 |
+
input_text = item[dataset_config["input_field"]]
|
| 154 |
+
expected_summary = item[dataset_config["expected_field"]]
|
| 155 |
+
|
| 156 |
+
# Call model
|
| 157 |
+
predicted_summary, latency = self._call_model(input_text)
|
| 158 |
+
|
| 159 |
+
if not predicted_summary.startswith("Error"):
|
| 160 |
+
results["successful_predictions"] += 1
|
| 161 |
+
|
| 162 |
+
# Calculate metrics
|
| 163 |
+
rouge_scores = self._calculate_rouge_scores(predicted_summary, expected_summary)
|
| 164 |
+
semantic_sim = self._calculate_semantic_similarity(predicted_summary, expected_summary)
|
| 165 |
+
compression = self._calculate_compression_ratio(input_text, predicted_summary)
|
| 166 |
+
|
| 167 |
+
# Store results
|
| 168 |
+
results["rouge1_scores"].append(rouge_scores['rouge1'])
|
| 169 |
+
results["rouge2_scores"].append(rouge_scores['rouge2'])
|
| 170 |
+
results["rougeL_scores"].append(rouge_scores['rougeL'])
|
| 171 |
+
results["semantic_similarity"].append(semantic_sim)
|
| 172 |
+
results["compression_ratios"].append(compression)
|
| 173 |
+
results["latency_ms"].append(latency * 1000)
|
| 174 |
+
|
| 175 |
+
# Store example (keep first 5 for readability)
|
| 176 |
+
if len(results["examples"]) < 5:
|
| 177 |
+
results["examples"].append({
|
| 178 |
+
"input": input_text[:200] + "..." if len(input_text) > 200 else input_text,
|
| 179 |
+
"expected": expected_summary,
|
| 180 |
+
"predicted": predicted_summary,
|
| 181 |
+
"rouge1": rouge_scores['rouge1'],
|
| 182 |
+
"semantic_similarity": semantic_sim,
|
| 183 |
+
"compression_ratio": compression
|
| 184 |
+
})
|
| 185 |
+
|
| 186 |
+
# Calculate averages
|
| 187 |
+
if results["successful_predictions"] > 0:
|
| 188 |
+
results["averages"] = {
|
| 189 |
+
"rouge1": np.mean(results["rouge1_scores"]),
|
| 190 |
+
"rouge2": np.mean(results["rouge2_scores"]),
|
| 191 |
+
"rougeL": np.mean(results["rougeL_scores"]),
|
| 192 |
+
"semantic_similarity": np.mean(results["semantic_similarity"]),
|
| 193 |
+
"compression_ratio": np.mean(results["compression_ratios"]),
|
| 194 |
+
"latency_ms": np.mean(results["latency_ms"])
|
| 195 |
+
}
|
| 196 |
+
else:
|
| 197 |
+
results["averages"] = {
|
| 198 |
+
"rouge1": 0.0,
|
| 199 |
+
"rouge2": 0.0,
|
| 200 |
+
"rougeL": 0.0,
|
| 201 |
+
"semantic_similarity": 0.0,
|
| 202 |
+
"compression_ratio": 0.0,
|
| 203 |
+
"latency_ms": 0.0
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
print(f"✅ {dataset_name} completed")
|
| 207 |
+
return results
|
| 208 |
+
|
| 209 |
+
def run_benchmarks(self):
|
| 210 |
+
print("🚀 Starting Summarizer-Standard Benchmark Suite")
|
| 211 |
+
print("=" * 60)
|
| 212 |
+
print("Evaluating summarization quality with ROUGE and semantic metrics")
|
| 213 |
+
print()
|
| 214 |
+
|
| 215 |
+
# Check server health
|
| 216 |
+
try:
|
| 217 |
+
response = requests.get(f"{self.config['model']['base_url']}/health", timeout=10)
|
| 218 |
+
if response.status_code == 200:
|
| 219 |
+
print("✅ Summarizer-Standard server is running")
|
| 220 |
+
else:
|
| 221 |
+
print(f"❌ Server returned status {response.status_code}")
|
| 222 |
+
return
|
| 223 |
+
except Exception as e:
|
| 224 |
+
print(f"❌ Cannot connect to Summarizer-Standard server: {e}")
|
| 225 |
+
print("Make sure to start the model server first:")
|
| 226 |
+
print(" cd summarizer_standard_model.app/Contents/Resources && ./run_server")
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
# Run benchmarks
|
| 230 |
+
for dataset_config in self.config["datasets"]:
|
| 231 |
+
dataset_name = dataset_config["name"]
|
| 232 |
+
results = self._run_dataset_benchmark(dataset_name, dataset_config)
|
| 233 |
+
self.results["datasets"][dataset_name] = results
|
| 234 |
+
|
| 235 |
+
# Calculate overall averages
|
| 236 |
+
self._calculate_overall_metrics()
|
| 237 |
+
self._save_results()
|
| 238 |
+
self._create_benchmarks_txt()
|
| 239 |
+
|
| 240 |
+
def _calculate_overall_metrics(self):
|
| 241 |
+
all_rouge1 = []
|
| 242 |
+
all_rouge2 = []
|
| 243 |
+
all_rougeL = []
|
| 244 |
+
all_semantic = []
|
| 245 |
+
all_compression = []
|
| 246 |
+
all_latency = []
|
| 247 |
+
total_samples = 0
|
| 248 |
+
|
| 249 |
+
for dataset_results in self.results["datasets"].values():
|
| 250 |
+
if "averages" in dataset_results:
|
| 251 |
+
all_rouge1.append(dataset_results["averages"]["rouge1"])
|
| 252 |
+
all_rouge2.append(dataset_results["averages"]["rouge2"])
|
| 253 |
+
all_rougeL.append(dataset_results["averages"]["rougeL"])
|
| 254 |
+
all_semantic.append(dataset_results["averages"]["semantic_similarity"])
|
| 255 |
+
all_compression.append(dataset_results["averages"]["compression_ratio"])
|
| 256 |
+
all_latency.append(dataset_results["averages"]["latency_ms"])
|
| 257 |
+
total_samples += dataset_results["sample_count"]
|
| 258 |
+
|
| 259 |
+
self.results["overall_metrics"] = {
|
| 260 |
+
"avg_rouge1": np.mean(all_rouge1) if all_rouge1 else 0,
|
| 261 |
+
"avg_rouge2": np.mean(all_rouge2) if all_rouge2 else 0,
|
| 262 |
+
"avg_rougeL": np.mean(all_rougeL) if all_rougeL else 0,
|
| 263 |
+
"avg_semantic_similarity": np.mean(all_semantic) if all_semantic else 0,
|
| 264 |
+
"avg_compression_ratio": np.mean(all_compression) if all_compression else 0,
|
| 265 |
+
"avg_latency_ms": np.mean(all_latency) if all_latency else 0,
|
| 266 |
+
"model_size_gb": self.config["output"]["model_size_gb"],
|
| 267 |
+
"total_samples": total_samples
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
def _save_results(self):
|
| 271 |
+
results_dir = Path("results")
|
| 272 |
+
results_dir.mkdir(exist_ok=True)
|
| 273 |
+
|
| 274 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 275 |
+
results_file = results_dir / f"summarizer_standard_benchmark_{timestamp}.json"
|
| 276 |
+
|
| 277 |
+
with open(results_file, 'w') as f:
|
| 278 |
+
json.dump(self.results, f, indent=2)
|
| 279 |
+
|
| 280 |
+
print(f"📁 Detailed results saved to: {results_file}")
|
| 281 |
+
|
| 282 |
+
def _create_benchmarks_txt(self):
|
| 283 |
+
"""Create the benchmarks.txt file with all results"""
|
| 284 |
+
benchmarks_content = []
|
| 285 |
+
benchmarks_content.append("="*80)
|
| 286 |
+
benchmarks_content.append("SUMMARIZER-STANDARD MODEL BENCHMARK RESULTS")
|
| 287 |
+
benchmarks_content.append("="*80)
|
| 288 |
+
benchmarks_content.append("")
|
| 289 |
+
benchmarks_content.append("📊 EXECUTIVE SUMMARY")
|
| 290 |
+
benchmarks_content.append("-"*50)
|
| 291 |
+
benchmarks_content.append(f"Benchmark Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
| 292 |
+
benchmarks_content.append(f"Model: {self.results['model']}")
|
| 293 |
+
benchmarks_content.append(f"Dataset: CNN/DailyMail Sample")
|
| 294 |
+
benchmarks_content.append(f"Total Samples: {self.results['overall_metrics']['total_samples']}")
|
| 295 |
+
benchmarks_content.append(f"Model Size: {self.results['overall_metrics']['model_size_gb']:.3f} GB")
|
| 296 |
+
benchmarks_content.append("")
|
| 297 |
+
|
| 298 |
+
overall = self.results['overall_metrics']
|
| 299 |
+
benchmarks_content.append("🎯 OVERALL PERFORMANCE METRICS")
|
| 300 |
+
benchmarks_content.append("-"*50)
|
| 301 |
+
benchmarks_content.append(f" ROUGE-1 Score: {overall['avg_rouge1']:.3f}")
|
| 302 |
+
benchmarks_content.append(f" ROUGE-2 Score: {overall['avg_rouge2']:.3f}")
|
| 303 |
+
benchmarks_content.append(f" ROUGE-L Score: {overall['avg_rougeL']:.3f}")
|
| 304 |
+
benchmarks_content.append(f" Semantic Similarity: {overall['avg_semantic_similarity']:.3f}")
|
| 305 |
+
benchmarks_content.append(f" Compression Ratio: {overall['avg_compression_ratio']:.3f}")
|
| 306 |
+
benchmarks_content.append(f" Average Latency: {overall['avg_latency_ms']:.1f}ms")
|
| 307 |
+
benchmarks_content.append("")
|
| 308 |
+
|
| 309 |
+
# Dataset breakdown
|
| 310 |
+
benchmarks_content.append("📈 DATASET BREAKDOWN")
|
| 311 |
+
benchmarks_content.append("-"*50)
|
| 312 |
+
|
| 313 |
+
for dataset_name, dataset_results in self.results["datasets"].items():
|
| 314 |
+
if "averages" in dataset_results:
|
| 315 |
+
benchmarks_content.append("")
|
| 316 |
+
benchmarks_content.append(f"🔹 {dataset_name.upper().replace('_', ' ')}")
|
| 317 |
+
benchmarks_content.append(f" Samples: {dataset_results['sample_count']}")
|
| 318 |
+
avg = dataset_results["averages"]
|
| 319 |
+
benchmarks_content.append(f" ROUGE-1: {avg['rouge1']:.3f}")
|
| 320 |
+
benchmarks_content.append(f" ROUGE-2: {avg['rouge2']:.3f}")
|
| 321 |
+
benchmarks_content.append(f" ROUGE-L: {avg['rougeL']:.3f}")
|
| 322 |
+
benchmarks_content.append(f" Semantic Similarity: {avg['semantic_similarity']:.3f}")
|
| 323 |
+
benchmarks_content.append(f" Compression Ratio: {avg['compression_ratio']:.3f}")
|
| 324 |
+
benchmarks_content.append(f" Latency: {avg['latency_ms']:.1f}ms")
|
| 325 |
+
|
| 326 |
+
# Add examples if available
|
| 327 |
+
if "examples" in dataset_results and dataset_results["examples"]:
|
| 328 |
+
benchmarks_content.append("")
|
| 329 |
+
benchmarks_content.append(" 📝 SAMPLE OUTPUTS:")
|
| 330 |
+
for i, example in enumerate(dataset_results["examples"][:3]): # Show first 3 examples
|
| 331 |
+
benchmarks_content.append(f" Example {i+1}:")
|
| 332 |
+
benchmarks_content.append(f" Input: {example['input']}")
|
| 333 |
+
benchmarks_content.append(f" Expected: {example['expected']}")
|
| 334 |
+
benchmarks_content.append(f" Predicted: {example['predicted']}")
|
| 335 |
+
benchmarks_content.append(f" ROUGE-1: {example['rouge1']:.3f}, Similarity: {example['semantic_similarity']:.3f}")
|
| 336 |
+
benchmarks_content.append("")
|
| 337 |
+
|
| 338 |
+
benchmarks_content.append("")
|
| 339 |
+
benchmarks_content.append("📋 METRICS EXPLANATION")
|
| 340 |
+
benchmarks_content.append("-"*50)
|
| 341 |
+
benchmarks_content.append("• ROUGE-1: Unigram (word) overlap between predicted and expected summaries")
|
| 342 |
+
benchmarks_content.append("• ROUGE-2: Bigram (2-word) overlap between predicted and expected summaries")
|
| 343 |
+
benchmarks_content.append("• ROUGE-L: Longest Common Subsequence overlap")
|
| 344 |
+
benchmarks_content.append("• Semantic Similarity: Word overlap similarity (Jaccard coefficient)")
|
| 345 |
+
benchmarks_content.append("• Compression Ratio: Summary length ÷ Input length (0.1-0.8 is ideal)")
|
| 346 |
+
benchmarks_content.append("• Latency: Response time in milliseconds (lower = faster)")
|
| 347 |
+
benchmarks_content.append("")
|
| 348 |
+
benchmarks_content.append("📊 INTERPRETING SCORES:")
|
| 349 |
+
benchmarks_content.append("• ROUGE scores > 0.5 are considered good, > 0.3 acceptable")
|
| 350 |
+
benchmarks_content.append("• Current scores indicate the model is not performing summarization effectively")
|
| 351 |
+
benchmarks_content.append("• The model generates very short outputs that miss key information")
|
| 352 |
+
benchmarks_content.append("")
|
| 353 |
+
benchmarks_content.append("="*80)
|
| 354 |
+
|
| 355 |
+
# Write to benchmarks.txt
|
| 356 |
+
with open("benchmarks.txt", "w") as f:
|
| 357 |
+
f.write("\n".join(benchmarks_content))
|
| 358 |
+
|
| 359 |
+
print("📄 Results summary saved to: benchmarks.txt")
|
| 360 |
+
|
| 361 |
+
def main():
|
| 362 |
+
parser = argparse.ArgumentParser(description="Run Summarizer-Standard benchmarks")
|
| 363 |
+
parser.add_argument("--config", default="benchmark_config.yaml", help="Config file")
|
| 364 |
+
|
| 365 |
+
args = parser.parse_args()
|
| 366 |
+
|
| 367 |
+
try:
|
| 368 |
+
runner = SummarizerStandardBenchmarkRunner(args.config)
|
| 369 |
+
runner.run_benchmarks()
|
| 370 |
+
print("\n✅ Benchmarking completed! Results saved to benchmarks.txt")
|
| 371 |
+
except Exception as e:
|
| 372 |
+
print(f"❌ Benchmark failed: {e}")
|
| 373 |
+
import traceback
|
| 374 |
+
traceback.print_exc()
|
| 375 |
+
|
| 376 |
+
if __name__ == "__main__":
|
| 377 |
+
main()
|