File size: 27,868 Bytes
da1403d f677010 da1403d f677010 da1403d f677010 da1403d f677010 da1403d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
import os
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Union
from transformers import (
AutoConfig, AutoTokenizer, AutoModelForCausalLM,
PretrainedConfig, PreTrainedModel, GenerationMixin
)
from transformers.models.auto import CONFIG_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING
from peft import PeftModel, LoraConfig, get_peft_model
EXPERTS_LIST = [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
]
class MoLAConfig(PretrainedConfig):
"""Configuration class for MoLA-LM model."""
model_type = "mola_lm"
def __init__(
self,
base_model_name_or_path: str = "Qwen/Qwen3-4B-Thinking-2507",
task_labels: List[str] = None,
router_config: Dict = None,
lora_configs: Dict[str, Dict] = None,
**kwargs
):
super().__init__(**kwargs)
self.base_model_name_or_path = base_model_name_or_path
self.task_labels = task_labels or EXPERTS_LIST
self.router_config = router_config or {}
self.lora_configs = lora_configs or {}
self.num_loras = len(self.task_labels)
class MoLAForCausalLM(PreTrainedModel, GenerationMixin):
"""
MoLA Language Model for Causal Language Modeling - AutoModel Compatible
"""
config_class = MoLAConfig
base_model_prefix = "mola_model" # Avoid recursion by using unique prefix
supports_gradient_checkpointing = True
def __init__(self, config):
super().__init__(config)
self.config = config
# Store model path for loading resources
self.model_path = getattr(config, '_name_or_path', None)
# Load base model (use base_model_prefix name)
print(f"Loading base model: {self.config.base_model_name_or_path}")
self.mola_model = AutoModelForCausalLM.from_pretrained(
self.config.base_model_name_or_path,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
# Load tokenizer
if self.model_path:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.config.base_model_name_or_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Initialize router
self._init_router()
# Initialize current model state (will be updated by _load_lora_adapters)
self._current_lora = None
self._current_adapted_model = self.mola_model
# Load LoRA configurations and adapters (this will update _current_adapted_model)
self._load_lora_adapters()
# Initialize device property (needed for PreTrainedModel compatibility)
self._device = next(self.mola_model.parameters()).device
# Load router weights if available
self._load_router_weights()
print("MoLA-LM initialized successfully!")
def _load_router_weights(self):
"""Load router weights from the saved checkpoint."""
if self.model_path:
try:
# Handle both local and Hub paths for router weights
if os.path.exists(self.model_path):
# Local path
router_weights_path = os.path.join(self.model_path, "router_weights.pth")
if os.path.exists(router_weights_path):
checkpoint = torch.load(router_weights_path, map_location='cpu')
else:
print("⚠️ No router weights found locally")
return
else:
# Hub path - download router weights
try:
from huggingface_hub import hf_hub_download
router_weights_path = hf_hub_download(
repo_id=self.model_path,
filename="router_weights.pth",
local_files_only=False
)
checkpoint = torch.load(router_weights_path, map_location='cpu')
print("📥 Downloaded router weights from Hub")
except Exception as hub_e:
print(f"⚠️ Failed to download router weights from Hub: {hub_e}")
print("🔄 Router will use random initialization (reduced performance)")
return
# Load router decoder weights
router_state_dict = {}
for key, value in checkpoint.items():
if not key.startswith('encoder.'): # Skip encoder weights
router_state_dict[key] = value
if router_state_dict:
self.router_decoder.load_state_dict(router_state_dict, strict=False)
print("✅ Loaded router weights successfully!")
# Verify weights loaded by checking if they're not all zeros
first_layer = next(iter(self.router_decoder.parameters()))
if torch.all(first_layer == 0):
print("⚠️ Warning: Router weights appear to be zero-initialized")
else:
print("🎯 Router weights verified - non-zero values detected")
else:
print("⚠️ No valid router weights found in checkpoint")
except Exception as e:
print(f"❌ Failed to load router weights: {e}")
print("🔄 Router will use random initialization (reduced performance)")
def _init_router(self):
"""Initialize the router model for LoRA selection."""
try:
from transformers import AutoModel
print("Initializing router components...")
# Router components
self.router_tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
self.router_encoder = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
# Freeze encoder
for param in self.router_encoder.parameters():
param.requires_grad = False
# Router decoder
encoder_dim = self.router_encoder.config.hidden_size
self.router_decoder = nn.Sequential(
nn.Linear(encoder_dim, 768),
nn.ReLU(),
nn.Dropout(.3),
nn.Linear(768, 768),
nn.ReLU(),
nn.Dropout(.3),
nn.Linear(768, 768),
nn.ReLU(),
nn.Dropout(.3),
nn.Linear(768, 384),
nn.ReLU(),
nn.Dropout(.3),
nn.Linear(384, 192),
nn.ReLU(),
nn.Dropout(.3),
nn.Linear(192, self.config.num_loras)
)
# Move router to device
if torch.cuda.is_available():
self.router_encoder = self.router_encoder.cuda()
self.router_decoder = self.router_decoder.cuda()
print("Router initialized successfully!")
except ImportError as e:
raise ImportError(f"Required dependencies not found: {e}")
def _load_lora_adapters(self):
"""Load LoRA adapters using PEFT (single wrapper, multiple adapters)."""
from huggingface_hub import hf_hub_download
if not self.model_path:
print("No model path specified, skipping LoRA loading")
return
print("Loading LoRA adapters (single wrapper)...")
# Get the first adapter to create the initial PEFT wrapper
first_adapter = str(self.config.task_labels[0])
first_lora_path = None
try:
# Handle both local and Hub paths for first adapter
if os.path.exists(self.model_path):
# Local path
first_lora_path = os.path.join(self.model_path, "loras", first_adapter)
if not os.path.exists(first_lora_path):
raise FileNotFoundError(f"First adapter directory not found: {first_lora_path}")
else:
# Hub path - download first adapter
try:
# Download both required files for first adapter
adapter_weights_file = hf_hub_download(
repo_id=self.model_path,
filename=f"loras/{first_adapter}/adapter_model.safetensors"
)
adapter_config_file = hf_hub_download(
repo_id=self.model_path,
filename=f"loras/{first_adapter}/adapter_config.json"
)
first_lora_path = os.path.dirname(adapter_weights_file)
print(f"Downloaded first adapter to: {first_lora_path}")
except Exception as e:
raise Exception(f"Failed to download first adapter {first_adapter}: {e}")
# Create the initial PEFT wrapper WITHOUT specifying adapter_name to use default
peft_model = PeftModel.from_pretrained(
self.mola_model,
first_lora_path,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
print(f"✅ Loaded first LoRA: {first_adapter} (as default)")
# Load remaining adapters into the same wrapper with unique names
for task_name in self.config.task_labels[1:]:
try:
lora_path = None
if os.path.exists(self.model_path):
# Local path
lora_path = os.path.join(self.model_path, "loras", task_name)
if not os.path.exists(lora_path):
print(f"⚠️ LoRA directory not found: {lora_path}")
continue
else:
# Hub path - download adapter
try:
adapter_weights_file = hf_hub_download(
repo_id=self.model_path,
filename=f"loras/{task_name}/adapter_model.safetensors"
)
adapter_config_file = hf_hub_download(
repo_id=self.model_path,
filename=f"loras/{task_name}/adapter_config.json"
)
lora_path = os.path.dirname(adapter_weights_file)
except Exception as e:
print(f"❌ Failed to download LoRA {task_name}: {e}")
continue
# Load adapter into the same PEFT model with unique name
peft_model.load_adapter(lora_path, adapter_name=task_name)
print(f"✅ Loaded LoRA: {task_name}")
except Exception as e:
print(f"❌ Failed to load LoRA {task_name}: {e}")
# Store single PEFT model for all adapters
self.lora_models = {str(name): peft_model for name in self.config.task_labels}
self._current_lora = first_adapter
self._current_adapted_model = peft_model
print(f"Loaded {len(self.config.task_labels)} LoRA adapters into one PEFT model.")
print(f"Available adapter names: {list(peft_model.peft_config.keys())}")
except Exception as e:
print(f"❌ Failed to initialize LoRA loading: {e}")
self.lora_models = {}
self._current_adapted_model = self.mola_model
self._current_lora = None
def predict_best_lora(self, text: str) -> str:
"""Predict the best LoRA adapter for given text."""
# Set models to eval mode
self.router_encoder.eval()
self.router_decoder.eval()
# Encode text
inputs = self.router_tokenizer(
[text],
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
)
# Move to device
device = next(self.router_decoder.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.router_encoder(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
logits = self.router_decoder(embeddings)
# Get best LoRA
best_idx = torch.argmax(logits, dim=-1).item()
predicted_label = self.config.task_labels[best_idx]
# Debug output
# print(f"Debug - Text: {text[:50]}...")
# print(f"Debug - Logits: {logits[0].cpu().numpy()}")
# print(f"Debug - Best idx: {best_idx}, Label: {predicted_label}")
return predicted_label
def _apply_lora(self, lora_name: str):
"""Apply the selected LoRA adapter using set_adapter."""
if hasattr(self, '_current_adapted_model') and isinstance(self._current_adapted_model, PeftModel):
# Map task labels to actual adapter names in PEFT model
# First adapter (task_labels[0]) is loaded as 'default', others keep their names
first_adapter = str(self.config.task_labels[0])
if str(lora_name) == first_adapter:
actual_adapter_name = "default"
else:
actual_adapter_name = str(lora_name)
# Check if the adapter exists in the PEFT model
if actual_adapter_name in self._current_adapted_model.peft_config:
if lora_name != self._current_lora:
self._current_adapted_model.set_adapter(actual_adapter_name)
self._current_lora = str(lora_name)
# print(f"🎯 Applied LoRA: {lora_name} (as {actual_adapter_name})") # Uncomment for debugging
else:
print(f"⚠️ LoRA adapter '{lora_name}' (mapped to '{actual_adapter_name}') not found in PEFT model. Available: {list(self._current_adapted_model.peft_config.keys())}")
# Keep current adapter if requested one doesn't exist
else:
# Fallback to base model if no PEFT model available
self._current_adapted_model = self.mola_model
self._current_lora = None
print(f"⚠️ No PEFT model available, using base model")
def get_available_loras(self) -> List[str]:
"""Get list of available LoRA adapter names."""
if hasattr(self, '_current_adapted_model') and isinstance(self._current_adapted_model, PeftModel):
return list(self._current_adapted_model.peft_config.keys())
else:
return []
def test_adapter_uniqueness(self, layer_name: str = "base_model.model.model.layers.33.mlp.down_proj"):
"""
Regression test to verify that adapters have different weights.
Args:
layer_name: The layer to test (default is a common MLP layer)
Returns:
Dict[str, str]: Mapping of adapter names to their weight hashes
"""
import hashlib
if not hasattr(self, '_current_adapted_model') or not isinstance(self._current_adapted_model, PeftModel):
print("⚠️ No PEFT model available for testing")
return {}
names = self.get_available_loras()
if len(names) <= 1:
print(f"⚠️ Need at least 2 adapters for uniqueness test, found {len(names)}")
return {}
def fused_sha(adapter_name, layer_name):
"""Compute SHA256 hash of fused LoRA weights for given adapter and layer."""
# Switch to the adapter
self._apply_lora(adapter_name)
# Navigate to the specified layer
try:
mod = self._current_adapted_model
for part in layer_name.split("."):
if part:
mod = getattr(mod, part)
# Get LoRA components
if not hasattr(mod, 'lora_A') or not hasattr(mod, 'lora_B'):
print(f"⚠️ Layer {layer_name} doesn't have LoRA components")
return "no_lora"
# Get the currently active adapter key from the PEFT model
active_adapter_key = self._current_adapted_model.active_adapter
# Check if the active adapter key exists
if active_adapter_key not in mod.lora_A:
print(f"⚠️ Active adapter key '{active_adapter_key}' not found. Available: {list(mod.lora_A.keys())}")
return f"missing_{adapter_name}"
A = mod.lora_A[active_adapter_key].weight
B = mod.lora_B[active_adapter_key].weight
s = float(mod.scaling[active_adapter_key])
# Compute fused weights: ΔW = (B @ A) * scaling
dW = (B @ A) * s
# Convert to bytes and hash
tensor_bytes = dW.detach().to("cpu", dtype=torch.float32).contiguous().numpy().tobytes()
return hashlib.sha256(tensor_bytes).hexdigest()[:16]
except Exception as e:
print(f"❌ Error computing hash for {adapter_name}: {e}")
return f"error_{adapter_name}"
print(f"🧪 Testing adapter uniqueness on layer: {layer_name}")
hashes = {}
for adapter_name in names:
hash_val = fused_sha(adapter_name, layer_name)
hashes[adapter_name] = hash_val
print(f" {adapter_name}: {hash_val}")
# Check uniqueness
unique_hashes = set(hashes.values())
if len(unique_hashes) == len(names):
print("✅ All adapters have unique weights!")
else:
print(f"❌ Found duplicate weights! {len(names)} adapters but only {len(unique_hashes)} unique hashes")
# Show which ones are identical
from collections import defaultdict
hash_to_adapters = defaultdict(list)
for adapter, hash_val in hashes.items():
hash_to_adapters[hash_val].append(adapter)
for hash_val, adapter_list in hash_to_adapters.items():
if len(adapter_list) > 1:
print(f" Identical weights (hash {hash_val}): {adapter_list}")
return hashes
def generate(self, input_ids=None, attention_mask=None, **kwargs):
"""
Standard generate method with automatic LoRA selection.
Works exactly like any other LLM's generate method.
"""
# If we have input_ids, predict and apply the best LoRA
if input_ids is not None and hasattr(self, 'tokenizer'):
try:
# Decode the input to get the text for LoRA prediction
if len(input_ids.shape) > 1:
# Batch input - use first item
text_input = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
else:
text_input = self.tokenizer.decode(input_ids, skip_special_tokens=True)
# Clean the text thoroughly to remove ALL chat template artifacts
import re
# Build regex patterns to avoid escape issues in embedded code
start_pattern = '<' + '|im_start|' + '>user'
end_pattern = '<' + '|im_end|' + '>'
# First, try to extract just the user's actual question/prompt
if start_pattern in text_input and end_pattern in text_input:
start_idx = text_input.find(start_pattern) + len(start_pattern)
end_idx = text_input.find(end_pattern, start_idx)
if end_idx > start_idx:
text_input = text_input[start_idx:end_idx].strip()
# Clean up any remaining template artifacts
# Remove special tokens with simple string replacement
text_input = text_input.replace('<|im_start|>', '')
text_input = text_input.replace('<|im_end|>', '')
text_input = text_input.replace('system', '')
text_input = text_input.replace('user', '')
text_input = text_input.replace('assistant', '')
# Remove system message patterns
if 'You are Qwen' in text_input:
lines = text_input.split('\n')
lines = [line for line in lines if 'You are' not in line and 'Alibaba' not in line]
text_input = ' '.join(lines)
# Final cleanup
text_input = re.sub(r'\n+', ' ', text_input) # Replace newlines with spaces
text_input = re.sub(r'\s+', ' ', text_input) # Normalize whitespace
text_input = text_input.strip()
# Debug: print the actual text being classified
# print(f"DEBUG RAW: '{self.tokenizer.decode(input_ids[0], skip_special_tokens=False)}'")
# print(f"DEBUG CLEAN: '{text_input}'")
# Predict and apply best LoRA
best_lora = self.predict_best_lora(text_input)
self._apply_lora(best_lora)
except Exception as e:
# If LoRA prediction fails, use base model
# print(f"DEBUG: LoRA prediction failed: {e}")
self._current_adapted_model = self.mola_model
self._current_lora = None
# Use the currently adapted model for generation
return self._current_adapted_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
**kwargs
)
def forward(self, input_ids, attention_mask=None, **kwargs):
"""Forward pass through the model."""
return self._current_adapted_model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
def __call__(self, *args, **kwargs):
"""Make the model callable."""
return self._current_adapted_model(*args, **kwargs)
def get_input_embeddings(self):
"""Get the input embeddings."""
return self._current_adapted_model.get_input_embeddings()
def set_input_embeddings(self, value):
"""Set the input embeddings."""
self._current_adapted_model.set_input_embeddings(value)
# Also set for base model to keep them in sync
self.mola_model.set_input_embeddings(value)
def get_output_embeddings(self):
"""Get the output embeddings."""
return self._current_adapted_model.get_output_embeddings()
def set_output_embeddings(self, value):
"""Set the output embeddings."""
self._current_adapted_model.set_output_embeddings(value)
# Also set for base model to keep them in sync
self.mola_model.set_output_embeddings(value)
def tie_weights(self):
"""Tie input and output embeddings."""
self._current_adapted_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens):
"""Resize token embeddings."""
return self._current_adapted_model.resize_token_embeddings(new_num_tokens)
@property
def device(self):
"""Get the device of the model."""
return next(self.mola_model.parameters()).device
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""Load model from pretrained path (transformers compatibility)."""
# Load config
config = MoLAConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
# Store the path for resource loading
config._name_or_path = pretrained_model_name_or_path
return cls(config)
def save_pretrained(self, save_directory, **kwargs):
"""Save model using standard transformers approach."""
# Accept standard transformers parameters but use the ones we need
max_shard_size = kwargs.get('max_shard_size', "5GB")
safe_serialization = kwargs.get('safe_serialization', True)
os.makedirs(save_directory, exist_ok=True)
# Save config using transformers method
self.config.save_pretrained(save_directory)
# Save tokenizer if available
if hasattr(self, 'tokenizer'):
self.tokenizer.save_pretrained(save_directory)
# Save the base model with proper sharding if needed
try:
# Use the base model's save_pretrained with the parameters
self.mola_model.save_pretrained(
save_directory,
max_shard_size=max_shard_size,
safe_serialization=safe_serialization
)
except Exception as e:
print(f"Warning: Could not save base model weights: {e}")
# Fallback: just save the config and tokenizer
pass
# Save router weights if they exist
try:
if hasattr(self, 'router_decoder'):
router_state_dict = self.router_decoder.state_dict()
torch.save(router_state_dict, os.path.join(save_directory, "router_weights.pth"))
except Exception as e:
print(f"Warning: Could not save router weights: {e}")
print(f"Model saved to {save_directory}")
def get_current_lora(self) -> str:
"""Get the currently applied LoRA adapter name."""
return self._current_lora or "base_model"
def get_available_loras(self) -> List[str]:
"""Get list of available LoRA adapters."""
return list(self.lora_models.keys())
# For transformers AutoModel registration
def _load_mola_model(model_path, **kwargs):
"""Helper function to load MoLA model."""
return MoLAForCausalLM.from_pretrained(model_path, **kwargs)
# Register with transformers AutoModel system
try:
CONFIG_MAPPING.register("mola_lm", MoLAConfig)
MODEL_FOR_CAUSAL_LM_MAPPING.register(MoLAConfig, MoLAForCausalLM)
print("✅ Successfully registered MoLA-LM with AutoModel!")
except Exception as e:
print(f"⚠️ AutoModel registration failed: {e}")
# Try alternative registration for backwards compatibility
try:
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("mola_lm", MoLAConfig)
AutoModelForCausalLM.register(MoLAConfig, MoLAForCausalLM)
print("✅ Successfully registered MoLA-LM with legacy method!")
except Exception as e2:
print(f"⚠️ Legacy registration also failed: {e2}")
print("Model can still be loaded directly with MoLAForCausalLM.from_pretrained()")
|