Upload MoLA-LM: Mixture of LoRA Adapters Language Model
Browse files- README.md +7 -8
- modeling_mola_lm.py +56 -83
README.md
CHANGED
@@ -13,18 +13,13 @@ language:
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
-
|
17 |
|
18 |
# MoLA-LM: Mixture of LoRA Adapters LLM
|
19 |
|
20 |
MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency.
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
**Important Note**: *The v0.5 had issues with the lora applying part of the custom lm class and its router was a bit too small with little generalization.
|
25 |
-
In v0.6 and future models, all of these issues are/will be resolved.*
|
26 |
-
|
27 |
-
**TLDR:** *Dont use v0.5, use v0.6 and above.*
|
28 |
|
29 |
## Model Details
|
30 |
|
@@ -37,6 +32,7 @@ In v0.6 and future models, all of these issues are/will be resolved.*
|
|
37 |
|
38 |
```python
|
39 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
40 |
# Load the model (trust_remote_code=True is required for custom architecture)
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
42 |
"MoLA-LLM/MoLA-v0.6-9x4b",
|
@@ -44,6 +40,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
44 |
device_map="auto"
|
45 |
)
|
46 |
tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-v0.6-9x4b", trust_remote_code=True)
|
|
|
47 |
# Use like any other language model - adapter selection is automatic
|
48 |
prompt = "Write a Python function to calculate fibonacci numbers"
|
49 |
messages = [{"role": "user", "content": prompt}]
|
@@ -54,8 +51,10 @@ inputs = tokenizer.apply_chat_template(
|
|
54 |
return_dict=True,
|
55 |
return_tensors="pt",
|
56 |
).to(model.device)
|
|
|
57 |
outputs = model.generate(**inputs, max_new_tokens=8192, temperature=.6, do_sample=True)
|
58 |
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
|
|
59 |
print(f"Selected LoRA: {model.get_current_lora()}")
|
60 |
print(response)
|
61 |
```
|
@@ -66,7 +65,7 @@ print(response)
|
|
66 |
The MoLA-LM architecture consists of:
|
67 |
|
68 |
1. **Base Model**: Qwen/Qwen3-4B-Thinking-2507
|
69 |
-
2. **Router Network**: Frozen encoder as Sentence transformer + decoder as MLP for adapter selection
|
70 |
3. **LoRA Adapters**: 9 task-specific fine-tuned adapters
|
71 |
4. **Dynamic Switching**: Automatic adapter application based on input
|
72 |
|
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
+
Image here
|
17 |
|
18 |
# MoLA-LM: Mixture of LoRA Adapters LLM
|
19 |
|
20 |
MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency.
|
21 |
|
22 |
+
Evals are coming...
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Model Details
|
25 |
|
|
|
32 |
|
33 |
```python
|
34 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
35 |
+
|
36 |
# Load the model (trust_remote_code=True is required for custom architecture)
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
"MoLA-LLM/MoLA-v0.6-9x4b",
|
|
|
40 |
device_map="auto"
|
41 |
)
|
42 |
tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-v0.6-9x4b", trust_remote_code=True)
|
43 |
+
|
44 |
# Use like any other language model - adapter selection is automatic
|
45 |
prompt = "Write a Python function to calculate fibonacci numbers"
|
46 |
messages = [{"role": "user", "content": prompt}]
|
|
|
51 |
return_dict=True,
|
52 |
return_tensors="pt",
|
53 |
).to(model.device)
|
54 |
+
|
55 |
outputs = model.generate(**inputs, max_new_tokens=8192, temperature=.6, do_sample=True)
|
56 |
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
57 |
+
|
58 |
print(f"Selected LoRA: {model.get_current_lora()}")
|
59 |
print(response)
|
60 |
```
|
|
|
65 |
The MoLA-LM architecture consists of:
|
66 |
|
67 |
1. **Base Model**: Qwen/Qwen3-4B-Thinking-2507
|
68 |
+
2. **Router Network**: Frozen encoder as Sentence transformer + decoder as one layer MLP for adapter selection
|
69 |
3. **LoRA Adapters**: 9 task-specific fine-tuned adapters
|
70 |
4. **Dynamic Switching**: Automatic adapter application based on input
|
71 |
|
modeling_mola_lm.py
CHANGED
@@ -194,64 +194,29 @@ class MoLAForCausalLM(PreTrainedModel, GenerationMixin):
|
|
194 |
raise ImportError(f"Required dependencies not found: {e}")
|
195 |
|
196 |
def _load_lora_adapters(self):
|
197 |
-
"""Load LoRA adapters using PEFT
|
198 |
-
|
199 |
|
200 |
if not self.model_path:
|
201 |
print("No model path specified, skipping LoRA loading")
|
202 |
return
|
203 |
-
|
204 |
-
print("Loading LoRA adapters (single wrapper)...")
|
205 |
-
|
206 |
-
# Get the first adapter to create the initial PEFT wrapper
|
207 |
-
first_adapter = str(self.config.task_labels[0])
|
208 |
-
first_lora_path = None
|
209 |
|
|
|
210 |
try:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
first_lora_path = os.path.join(self.model_path, "loras", first_adapter)
|
215 |
-
if not os.path.exists(first_lora_path):
|
216 |
-
raise FileNotFoundError(f"First adapter directory not found: {first_lora_path}")
|
217 |
-
else:
|
218 |
-
# Hub path - download first adapter
|
219 |
-
try:
|
220 |
-
# Download both required files for first adapter
|
221 |
-
adapter_weights_file = hf_hub_download(
|
222 |
-
repo_id=self.model_path,
|
223 |
-
filename=f"loras/{first_adapter}/adapter_model.safetensors"
|
224 |
-
)
|
225 |
-
adapter_config_file = hf_hub_download(
|
226 |
-
repo_id=self.model_path,
|
227 |
-
filename=f"loras/{first_adapter}/adapter_config.json"
|
228 |
-
)
|
229 |
-
|
230 |
-
# Create a temporary directory with both files for PEFT
|
231 |
-
temp_dir = tempfile.mkdtemp()
|
232 |
-
first_lora_path = os.path.join(temp_dir, first_adapter)
|
233 |
-
os.makedirs(first_lora_path, exist_ok=True)
|
234 |
-
|
235 |
-
# Copy both files to the same directory
|
236 |
-
shutil.copy2(adapter_weights_file, os.path.join(first_lora_path, "adapter_model.safetensors"))
|
237 |
-
shutil.copy2(adapter_config_file, os.path.join(first_lora_path, "adapter_config.json"))
|
238 |
-
|
239 |
-
print(f"Downloaded first adapter to: {first_lora_path}")
|
240 |
-
except Exception as e:
|
241 |
-
raise Exception(f"Failed to download first adapter {first_adapter}: {e}")
|
242 |
|
243 |
-
# Create
|
244 |
-
|
245 |
-
|
246 |
-
first_lora_path,
|
247 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
248 |
-
)
|
249 |
-
print(f"✅ Loaded first LoRA: {first_adapter} (as default)")
|
250 |
|
251 |
-
|
252 |
-
|
|
|
|
|
253 |
try:
|
254 |
-
|
255 |
|
256 |
if os.path.exists(self.model_path):
|
257 |
# Local path
|
@@ -260,45 +225,53 @@ class MoLAForCausalLM(PreTrainedModel, GenerationMixin):
|
|
260 |
print(f"⚠️ LoRA directory not found: {lora_path}")
|
261 |
continue
|
262 |
else:
|
263 |
-
# Hub path -
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
-
|
288 |
-
peft_model.load_adapter(lora_path, adapter_name=task_name)
|
289 |
-
print(f"✅ Loaded LoRA: {task_name}")
|
290 |
|
291 |
except Exception as e:
|
292 |
print(f"❌ Failed to load LoRA {task_name}: {e}")
|
|
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
302 |
except Exception as e:
|
303 |
print(f"❌ Failed to initialize LoRA loading: {e}")
|
304 |
self.lora_models = {}
|
|
|
194 |
raise ImportError(f"Required dependencies not found: {e}")
|
195 |
|
196 |
def _load_lora_adapters(self):
|
197 |
+
"""Load LoRA adapters using PEFT - simplified approach."""
|
198 |
+
print("Loading LoRA adapters...")
|
199 |
|
200 |
if not self.model_path:
|
201 |
print("No model path specified, skipping LoRA loading")
|
202 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
# Simple approach: try to load each LoRA directly from Hub using PEFT's built-in capabilities
|
205 |
try:
|
206 |
+
from huggingface_hub import hf_hub_download
|
207 |
+
import tempfile
|
208 |
+
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
# Create a working directory for all LoRAs
|
211 |
+
work_dir = tempfile.mkdtemp(prefix="mola_loras_")
|
212 |
+
print(f"Working directory: {work_dir}")
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
peft_model = None
|
215 |
+
loaded_adapters = []
|
216 |
+
|
217 |
+
for i, task_name in enumerate(self.config.task_labels):
|
218 |
try:
|
219 |
+
print(f"Loading LoRA {task_name}...")
|
220 |
|
221 |
if os.path.exists(self.model_path):
|
222 |
# Local path
|
|
|
225 |
print(f"⚠️ LoRA directory not found: {lora_path}")
|
226 |
continue
|
227 |
else:
|
228 |
+
# Hub path - create proper structure
|
229 |
+
lora_path = os.path.join(work_dir, task_name)
|
230 |
+
os.makedirs(lora_path, exist_ok=True)
|
231 |
+
|
232 |
+
# Download files
|
233 |
+
weights_file = hf_hub_download(
|
234 |
+
repo_id=self.model_path,
|
235 |
+
filename=f"loras/{task_name}/adapter_model.safetensors"
|
236 |
+
)
|
237 |
+
config_file = hf_hub_download(
|
238 |
+
repo_id=self.model_path,
|
239 |
+
filename=f"loras/{task_name}/adapter_config.json"
|
240 |
+
)
|
241 |
+
|
242 |
+
# Copy to working directory
|
243 |
+
shutil.copy2(weights_file, os.path.join(lora_path, "adapter_model.safetensors"))
|
244 |
+
shutil.copy2(config_file, os.path.join(lora_path, "adapter_config.json"))
|
245 |
+
|
246 |
+
# Load the first adapter as base, others as additional
|
247 |
+
if i == 0:
|
248 |
+
peft_model = PeftModel.from_pretrained(
|
249 |
+
self.mola_model,
|
250 |
+
lora_path,
|
251 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
252 |
+
)
|
253 |
+
print(f"✅ Loaded base LoRA: {task_name}")
|
254 |
+
else:
|
255 |
+
peft_model.load_adapter(lora_path, adapter_name=task_name)
|
256 |
+
print(f"✅ Loaded additional LoRA: {task_name}")
|
257 |
|
258 |
+
loaded_adapters.append(task_name)
|
|
|
|
|
259 |
|
260 |
except Exception as e:
|
261 |
print(f"❌ Failed to load LoRA {task_name}: {e}")
|
262 |
+
continue
|
263 |
|
264 |
+
if peft_model and loaded_adapters:
|
265 |
+
# Store the PEFT model
|
266 |
+
self.lora_models = {name: peft_model for name in loaded_adapters}
|
267 |
+
self._current_adapted_model = peft_model
|
268 |
+
self._current_lora = loaded_adapters[0]
|
269 |
+
|
270 |
+
print(f"✅ Successfully loaded {len(loaded_adapters)} LoRA adapters")
|
271 |
+
print(f"Available adapters: {loaded_adapters}")
|
272 |
+
else:
|
273 |
+
raise Exception("No LoRA adapters could be loaded")
|
274 |
+
|
275 |
except Exception as e:
|
276 |
print(f"❌ Failed to initialize LoRA loading: {e}")
|
277 |
self.lora_models = {}
|