AtAndDev commited on
Commit
ae91eab
·
verified ·
1 Parent(s): f677010

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -12,14 +12,18 @@ language:
12
  - en
13
  pipeline_tag: text-generation
14
  ---
15
-
16
- Image here
17
 
18
  # MoLA-LM: Mixture of LoRA Adapters LLM
19
 
20
  MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency.
21
 
22
- Evals are coming...
 
 
 
 
 
23
 
24
  ## Model Details
25
 
@@ -32,7 +36,6 @@ Evals are coming...
32
 
33
  ```python
34
  from transformers import AutoModelForCausalLM, AutoTokenizer
35
-
36
  # Load the model (trust_remote_code=True is required for custom architecture)
37
  model = AutoModelForCausalLM.from_pretrained(
38
  "MoLA-LLM/MoLA-v0.6-9x4b",
@@ -40,7 +43,6 @@ model = AutoModelForCausalLM.from_pretrained(
40
  device_map="auto"
41
  )
42
  tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-v0.6-9x4b", trust_remote_code=True)
43
-
44
  # Use like any other language model - adapter selection is automatic
45
  prompt = "Write a Python function to calculate fibonacci numbers"
46
  messages = [{"role": "user", "content": prompt}]
@@ -51,10 +53,8 @@ inputs = tokenizer.apply_chat_template(
51
  return_dict=True,
52
  return_tensors="pt",
53
  ).to(model.device)
54
-
55
  outputs = model.generate(**inputs, max_new_tokens=8192, temperature=.6, do_sample=True)
56
  response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
57
-
58
  print(f"Selected LoRA: {model.get_current_lora()}")
59
  print(response)
60
  ```
@@ -65,7 +65,7 @@ print(response)
65
  The MoLA-LM architecture consists of:
66
 
67
  1. **Base Model**: Qwen/Qwen3-4B-Thinking-2507
68
- 2. **Router Network**: Frozen encoder as Sentence transformer + decoder as one layer MLP for adapter selection
69
  3. **LoRA Adapters**: 9 task-specific fine-tuned adapters
70
  4. **Dynamic Switching**: Automatic adapter application based on input
71
 
 
12
  - en
13
  pipeline_tag: text-generation
14
  ---
15
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630f3e4002ce39336c411048/3gVVmArsXVoogpkXvsBs7.png)
 
16
 
17
  # MoLA-LM: Mixture of LoRA Adapters LLM
18
 
19
  MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency.
20
 
21
+ [**Click for evals**](https://github.com/alkinun/MoLA/blob/main/README.md)
22
+
23
+ **Important Note**: *The v0.5 had issues with the lora applying part of the custom lm class and its router was a bit too small with little generalization.
24
+ In v0.6 and future models, all of these issues are/will be resolved.*
25
+
26
+ **TLDR:** *Dont use v0.5, use v0.6 and above.*
27
 
28
  ## Model Details
29
 
 
36
 
37
  ```python
38
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
39
  # Load the model (trust_remote_code=True is required for custom architecture)
40
  model = AutoModelForCausalLM.from_pretrained(
41
  "MoLA-LLM/MoLA-v0.6-9x4b",
 
43
  device_map="auto"
44
  )
45
  tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-v0.6-9x4b", trust_remote_code=True)
 
46
  # Use like any other language model - adapter selection is automatic
47
  prompt = "Write a Python function to calculate fibonacci numbers"
48
  messages = [{"role": "user", "content": prompt}]
 
53
  return_dict=True,
54
  return_tensors="pt",
55
  ).to(model.device)
 
56
  outputs = model.generate(**inputs, max_new_tokens=8192, temperature=.6, do_sample=True)
57
  response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
 
58
  print(f"Selected LoRA: {model.get_current_lora()}")
59
  print(response)
60
  ```
 
65
  The MoLA-LM architecture consists of:
66
 
67
  1. **Base Model**: Qwen/Qwen3-4B-Thinking-2507
68
+ 2. **Router Network**: Frozen encoder as Sentence transformer + decoder as MLP for adapter selection
69
  3. **LoRA Adapters**: 9 task-specific fine-tuned adapters
70
  4. **Dynamic Switching**: Automatic adapter application based on input
71