File size: 22,543 Bytes
d05fedd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
---
license: apache-2.0
pipeline_tag: text-generation
language:
- en
license_link: LICENSE
base_model:
- ibm-granite/granite-3.1-2b-instruct
quantized_by: bartowski
tags:
- llamafile
- language
- granite-3.2
---

# Granite 3.2 2B Instruct - llamafile

- Model creator: [IBM](https://huggingface.co/ibm-granite)
- Original model: [ibm-granite/granite-3.2-2b-instruct](https://huggingface.co/ibm-granite/granite-3.2-2b-instruct)

Mozilla packaged the IBM Granite 3.2 models into executable weights that we
call [llamafiles](https://github.com/Mozilla-Ocho/llamafile). This gives
you the easiest fastest way to use the model on Linux, MacOS, Windows,
FreeBSD, OpenBSD and NetBSD systems you control on both AMD64 and ARM64.

*Software Last Updated: 2025-03-31*

*Llamafile Version: 0.9.2*

## Quickstart

To get started, you need both the Granite 3.2 weights, and the llamafile
software. Both of them are included in a single file, which can be
downloaded and run as follows:

```
wget https://huggingface.co/Mozilla/granite-3.2-2b-instruct-llamafile/resolve/main/granite-3.2-2b-instruct-Q6_K.llamafile
chmod +x granite-3.2-2b-instruct-Q6_K.llamafile
./granite-3.2-2b-instruct-Q6_K.llamafile
```

The default mode of operation for these llamafiles is our new command
line chatbot interface.

## Usage

You can use triple quotes to ask questions on multiple lines. You can
pass commands like `/stats` and `/context` to see runtime status
information. You can change the system prompt by passing the `-p "new
system prompt"` flag. You can press CTRL-C to interrupt the model.
Finally CTRL-D may be used to exit.

If you prefer to use a web GUI, then a `--server` mode is provided, that
will open a tab with a chatbot and completion interface in your browser.
For additional help on how it may be used, pass the `--help` flag. The
server also has an OpenAI API compatible completions endpoint that can
be accessed via Python using the `openai` pip package.

```
./granite-3.2-2b-instruct-Q6_K.llamafile --server
```

An advanced CLI mode is provided that's useful for shell scripting. You
can use it by passing the `--cli` flag. For additional help on how it
may be used, pass the `--help` flag.

```
./granite-3.2-2b-instruct-Q6_K.llamafile --cli -p 'four score and seven' --log-disable
```

## Troubleshooting

Having **trouble?** See the ["Gotchas"
section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas-and-troubleshooting)
of the README.

On Linux, the way to avoid run-detector errors is to install the APE
interpreter.

```sh
sudo wget -O /usr/bin/ape https://cosmo.zip/pub/cosmos/bin/ape-$(uname -m).elf
sudo chmod +x /usr/bin/ape
sudo sh -c "echo ':APE:M::MZqFpD::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
sudo sh -c "echo ':APE-jart:M::jartsr::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
```

On Windows there's a 4GB limit on executable sizes.

## Context Window

This model has a max context window size of 128k tokens. By default, a
context window size of 8192 tokens is used. You can ask llamafile 
to use the maximum context size by passing the `-c 0` flag. That's big 
enough for a small book. If you want to be able to have a conversation
with your book, you can use the `-f book.txt` flag.

## GPU Acceleration

On GPUs with sufficient RAM, the `-ngl 999` flag may be passed to use
the system's NVIDIA or AMD GPU(s). On Windows, only the graphics card
driver needs to be installed if you own an NVIDIA GPU. On Windows, if
you have an AMD GPU, you should install the ROCm SDK v6.1 and then pass
the flags `--recompile --gpu amd` the first time you run your llamafile.

On NVIDIA GPUs, by default, the prebuilt tinyBLAS library is used to
perform matrix multiplications. This is open source software, but it
doesn't go as fast as closed source cuBLAS. If you have the CUDA SDK
installed on your system, then you can pass the `--recompile` flag to
build a GGML CUDA library just for your system that uses cuBLAS. This
ensures you get maximum performance.

For further information, please see the [llamafile
README](https://github.com/mozilla-ocho/llamafile/).

## About llamafile

llamafile is a new format introduced by Mozilla on Nov 20th 2023. It
uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
binaries that run on the stock installs of six OSes for both ARM64 and
AMD64.

---

# Granite-3.2-2B-Instruct

**Model Summary:**
Granite-3.2-2B-Instruct is an 2-billion-parameter, long-context AI model fine-tuned for thinking capabilities. Built on top of [Granite-3.1-2B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct), it has been trained using a mix of permissively licensed open-source datasets and internally generated synthetic data designed for reasoning tasks. The model allows controllability of its thinking capability, ensuring it is applied only when required.


- **Developers:** Granite Team, IBM
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Release Date**: February 26th, 2025
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.

**Intended Use:** 
This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.

**Capabilities**
* **Thinking**
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
* Long-context tasks including long document/meeting summarization, long document QA, etc.



**Generation:** 
This is a simple example of how to use Granite-3.2-2B-Instruct model.

Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the snippet from the section that is relevant for your use case.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch

model_path="ibm-granite/granite-3.2-2b-instruct"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
        model_path,
        device_map=device,
        torch_dtype=torch.bfloat16,
    )
tokenizer = AutoTokenizer.from_pretrained(
        model_path
)

conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]

input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)

set_seed(42)
output = model.generate(
    **input_ids,
    max_new_tokens=8192,
)

prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
```

**Example Outputs**
- thinking=True
```md
Here is my thought process:

1. First, let's understand the composition of the initial 10 liters of 30% acid solution:
   - Acid content = 30% of 10 liters = 0.30 * 10 = 3 liters

2. We want to end up with a 50% acid solution. Let's denote the volume of the 70% acid solution to be added as 'x' liters.

3. The amount of acid in the final mixture (50% solution) should equal the initial acid content plus the acid from the added 70% solution.
   - Total acid in final mixture = 0.50 * (10 + x)

4. The equation representing the total acid content is:
   3 (from initial solution) + 0.70 * x (from added solution) = 0.50 * (10 + x)

5. Now, we solve for 'x':
   3 + 0.70x = 5 + 0.50x
   0.70x - 0.50x = 5 - 3
   0.20x = 2
   x = 2 / 0.20
   x = 10 liters

6. Therefore, 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution to achieve a 50% acid mixture.

Here is my response:

To solve this problem, we need to determine how much of a 70% acid solution must be added to a 10-liter solution that is already 30% acid to create a new mixture that is 50% acid. Here's how to calculate it:

1. **Initial Acid Content**:
   - The initial 10-liter solution contains 3 liters of acid (since 30% of 10 liters).

2. **Desired Final Acid Content**:
   - We want the final mixture to be 50% acid.

3. **Equation Setup**:
   - Let 'x' be the volume (in liters) of the 70% acid solution to be added.
   - The equation representing the total acid content in the final mixture (which is 10 liters from the initial solution plus 'x' liters of the added solution) should equal 50% of the total volume (10 + x).
   - This gives us: 3 (acid from initial solution) + 0.70x (acid from added solution) = 0.50(10 + x)

4. **Solving the Equation**:
   - First, simplify the right side of the equation: 0.50(10 + x) = 5 + 0.50x
   - Now, the equation is: 3 + 0.70x = 5 + 0.50x
   - Subtract 0.50x from both sides: 0.20x = 2
   - Divide both sides by 0.20: x = 2 / 0.20
   - x = 10 liters

5. **Conclusion**:
   - To achieve a 50% acid mixture from the initial 30% solution, you need to add 10 liters of a 70% acid solution.

So, the final answer is that 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution.
```
- thinking=False
```md
To solve this problem, we'll use the concept of volume and concentration. Let's denote the amount of 70% acid solution we need to add as "x" liters.

First, let's find out how much acid is in the initial 10-liter solution:

Acid in initial solution = 30% of 10 liters = 0.30 * 10 = 3 liters

Now, we want to end up with a 50% acid solution in a total volume of (10 + x) liters. Let's denote the final volume as V.

Final acid concentration = 50%
Final acid amount = 50% of V = 0.50 * V

We know the initial acid amount and the final acid amount, so we can set up an equation:

Initial acid amount + Acid from added solution = Final acid amount
3 liters + (70% of x) = 0.50 * (10 + x)

Now, let's solve for x:

0.70x + 3 = 0.50 * 10 + 0.50x
0.70x - 0.50x = 0.50 * 10 - 3
0.20x = 5 - 3
0.20x = 2
x = 2 / 0.20
x = 10 liters

So, you need to add 10 liters of a 70% acid solution to the initial 10-liter 30% acid solution to achieve a 50% acid mixture.
```

**Evaluation Results:**
<table>
  
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">ArenaHard</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Alpaca-Eval-2</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">DROP</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th>
   <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th>
  <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th>
  </tr></thead>
  <tbody>
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Llama-3.1-8B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">36.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">27.22</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">69.15</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">28.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">52.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">72.66</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">61.48</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.24</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.32</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">80.15</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.10</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.43</td>
  </tr>
           
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Llama-8B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">17.17</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">21.85</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">45.80</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">13.25</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">47.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">65.71</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">44.46</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">72.18</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">67.54</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">62.91</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.50</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.87</td>
  </tr>
      
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Qwen-2.5-7B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">25.44</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">74.30</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">18.12</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">63.06</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">70.40</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">54.71</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">84.46</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">93.35</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">89.91</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">74.90</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">81.90</td>
  </tr>
      
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Qwen-7B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">10.36</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">15.35</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">50.72</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">9.94</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">47.14</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">65.04</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.76</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">78.47</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.89</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">78.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">59.10</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.45</td>
  </tr>

  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-8B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">37.58</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.77</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">28.7</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">65.84</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">68.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">50.78</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.15</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">89.63</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">73.20</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.73</td>
  </tr>
      
      
<tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-2B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">23.3</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">27.17</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">57.11</td> 
    <td style="text-align:center; background-color: #DAE8FF; color: black;">20.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">59.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">54.46</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">18.68</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">67.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.45</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">75.26</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">63.59</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">84.7</td>
  </tr>

<tr>
      <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.2-8B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">55.25</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">61.19</td>
   <td style="text-align:center; background-color: #DAE8FF; color: black;">66.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">28.04</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.92</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">64.77</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">50.95</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">81.65</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">89.35</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.72</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">74.31</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.42</td>
 
  </tr>
 
  <tr>
      <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.2-2B-Instruct</b></td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">24.86</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">34.51</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">57.18</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">20.56</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">59.8</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">52.27</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">21.12</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">67.02</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">80.13</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">73.39</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">61.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.23</td>
  </tr> 
      


     
      
</tbody></table>

**Training Data:** 
Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites. 
<!-- A detailed attribution of datasets can be found in [Granite 3.2 Technical Report (coming soon)](#), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf). -->

**Infrastructure:**
We train Granite-3.2-2B-Instruct using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.

**Ethical Considerations and Limitations:** 
Granite-3.2-2B-Instruct builds upon Granite-3.1-2B-Instruct, leveraging both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-3.1-2B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) remain relevant.


**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources

<!-- ## Citation
```
@misc{granite-models,
  author = {author 1, author2, ...},
  title = {},
  journal = {},
  volume = {},
  year = {2024},
  url = {https://arxiv.org/abs/0000.00000},
}
``` -->