File size: 22,543 Bytes
d05fedd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
---
license: apache-2.0
pipeline_tag: text-generation
language:
- en
license_link: LICENSE
base_model:
- ibm-granite/granite-3.1-2b-instruct
quantized_by: bartowski
tags:
- llamafile
- language
- granite-3.2
---
# Granite 3.2 2B Instruct - llamafile
- Model creator: [IBM](https://huggingface.co/ibm-granite)
- Original model: [ibm-granite/granite-3.2-2b-instruct](https://huggingface.co/ibm-granite/granite-3.2-2b-instruct)
Mozilla packaged the IBM Granite 3.2 models into executable weights that we
call [llamafiles](https://github.com/Mozilla-Ocho/llamafile). This gives
you the easiest fastest way to use the model on Linux, MacOS, Windows,
FreeBSD, OpenBSD and NetBSD systems you control on both AMD64 and ARM64.
*Software Last Updated: 2025-03-31*
*Llamafile Version: 0.9.2*
## Quickstart
To get started, you need both the Granite 3.2 weights, and the llamafile
software. Both of them are included in a single file, which can be
downloaded and run as follows:
```
wget https://huggingface.co/Mozilla/granite-3.2-2b-instruct-llamafile/resolve/main/granite-3.2-2b-instruct-Q6_K.llamafile
chmod +x granite-3.2-2b-instruct-Q6_K.llamafile
./granite-3.2-2b-instruct-Q6_K.llamafile
```
The default mode of operation for these llamafiles is our new command
line chatbot interface.
## Usage
You can use triple quotes to ask questions on multiple lines. You can
pass commands like `/stats` and `/context` to see runtime status
information. You can change the system prompt by passing the `-p "new
system prompt"` flag. You can press CTRL-C to interrupt the model.
Finally CTRL-D may be used to exit.
If you prefer to use a web GUI, then a `--server` mode is provided, that
will open a tab with a chatbot and completion interface in your browser.
For additional help on how it may be used, pass the `--help` flag. The
server also has an OpenAI API compatible completions endpoint that can
be accessed via Python using the `openai` pip package.
```
./granite-3.2-2b-instruct-Q6_K.llamafile --server
```
An advanced CLI mode is provided that's useful for shell scripting. You
can use it by passing the `--cli` flag. For additional help on how it
may be used, pass the `--help` flag.
```
./granite-3.2-2b-instruct-Q6_K.llamafile --cli -p 'four score and seven' --log-disable
```
## Troubleshooting
Having **trouble?** See the ["Gotchas"
section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas-and-troubleshooting)
of the README.
On Linux, the way to avoid run-detector errors is to install the APE
interpreter.
```sh
sudo wget -O /usr/bin/ape https://cosmo.zip/pub/cosmos/bin/ape-$(uname -m).elf
sudo chmod +x /usr/bin/ape
sudo sh -c "echo ':APE:M::MZqFpD::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
sudo sh -c "echo ':APE-jart:M::jartsr::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
```
On Windows there's a 4GB limit on executable sizes.
## Context Window
This model has a max context window size of 128k tokens. By default, a
context window size of 8192 tokens is used. You can ask llamafile
to use the maximum context size by passing the `-c 0` flag. That's big
enough for a small book. If you want to be able to have a conversation
with your book, you can use the `-f book.txt` flag.
## GPU Acceleration
On GPUs with sufficient RAM, the `-ngl 999` flag may be passed to use
the system's NVIDIA or AMD GPU(s). On Windows, only the graphics card
driver needs to be installed if you own an NVIDIA GPU. On Windows, if
you have an AMD GPU, you should install the ROCm SDK v6.1 and then pass
the flags `--recompile --gpu amd` the first time you run your llamafile.
On NVIDIA GPUs, by default, the prebuilt tinyBLAS library is used to
perform matrix multiplications. This is open source software, but it
doesn't go as fast as closed source cuBLAS. If you have the CUDA SDK
installed on your system, then you can pass the `--recompile` flag to
build a GGML CUDA library just for your system that uses cuBLAS. This
ensures you get maximum performance.
For further information, please see the [llamafile
README](https://github.com/mozilla-ocho/llamafile/).
## About llamafile
llamafile is a new format introduced by Mozilla on Nov 20th 2023. It
uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
binaries that run on the stock installs of six OSes for both ARM64 and
AMD64.
---
# Granite-3.2-2B-Instruct
**Model Summary:**
Granite-3.2-2B-Instruct is an 2-billion-parameter, long-context AI model fine-tuned for thinking capabilities. Built on top of [Granite-3.1-2B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct), it has been trained using a mix of permissively licensed open-source datasets and internally generated synthetic data designed for reasoning tasks. The model allows controllability of its thinking capability, ensuring it is applied only when required.
- **Developers:** Granite Team, IBM
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Release Date**: February 26th, 2025
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
**Supported Languages:**
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.
**Intended Use:**
This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.
**Capabilities**
* **Thinking**
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
* Long-context tasks including long document/meeting summarization, long document QA, etc.
**Generation:**
This is a simple example of how to use Granite-3.2-2B-Instruct model.
Install the following libraries:
```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the snippet from the section that is relevant for your use case.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch
model_path="ibm-granite/granite-3.2-2b-instruct"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]
input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)
set_seed(42)
output = model.generate(
**input_ids,
max_new_tokens=8192,
)
prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
```
**Example Outputs**
- thinking=True
```md
Here is my thought process:
1. First, let's understand the composition of the initial 10 liters of 30% acid solution:
- Acid content = 30% of 10 liters = 0.30 * 10 = 3 liters
2. We want to end up with a 50% acid solution. Let's denote the volume of the 70% acid solution to be added as 'x' liters.
3. The amount of acid in the final mixture (50% solution) should equal the initial acid content plus the acid from the added 70% solution.
- Total acid in final mixture = 0.50 * (10 + x)
4. The equation representing the total acid content is:
3 (from initial solution) + 0.70 * x (from added solution) = 0.50 * (10 + x)
5. Now, we solve for 'x':
3 + 0.70x = 5 + 0.50x
0.70x - 0.50x = 5 - 3
0.20x = 2
x = 2 / 0.20
x = 10 liters
6. Therefore, 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution to achieve a 50% acid mixture.
Here is my response:
To solve this problem, we need to determine how much of a 70% acid solution must be added to a 10-liter solution that is already 30% acid to create a new mixture that is 50% acid. Here's how to calculate it:
1. **Initial Acid Content**:
- The initial 10-liter solution contains 3 liters of acid (since 30% of 10 liters).
2. **Desired Final Acid Content**:
- We want the final mixture to be 50% acid.
3. **Equation Setup**:
- Let 'x' be the volume (in liters) of the 70% acid solution to be added.
- The equation representing the total acid content in the final mixture (which is 10 liters from the initial solution plus 'x' liters of the added solution) should equal 50% of the total volume (10 + x).
- This gives us: 3 (acid from initial solution) + 0.70x (acid from added solution) = 0.50(10 + x)
4. **Solving the Equation**:
- First, simplify the right side of the equation: 0.50(10 + x) = 5 + 0.50x
- Now, the equation is: 3 + 0.70x = 5 + 0.50x
- Subtract 0.50x from both sides: 0.20x = 2
- Divide both sides by 0.20: x = 2 / 0.20
- x = 10 liters
5. **Conclusion**:
- To achieve a 50% acid mixture from the initial 30% solution, you need to add 10 liters of a 70% acid solution.
So, the final answer is that 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution.
```
- thinking=False
```md
To solve this problem, we'll use the concept of volume and concentration. Let's denote the amount of 70% acid solution we need to add as "x" liters.
First, let's find out how much acid is in the initial 10-liter solution:
Acid in initial solution = 30% of 10 liters = 0.30 * 10 = 3 liters
Now, we want to end up with a 50% acid solution in a total volume of (10 + x) liters. Let's denote the final volume as V.
Final acid concentration = 50%
Final acid amount = 50% of V = 0.50 * V
We know the initial acid amount and the final acid amount, so we can set up an equation:
Initial acid amount + Acid from added solution = Final acid amount
3 liters + (70% of x) = 0.50 * (10 + x)
Now, let's solve for x:
0.70x + 3 = 0.50 * 10 + 0.50x
0.70x - 0.50x = 0.50 * 10 - 3
0.20x = 5 - 3
0.20x = 2
x = 2 / 0.20
x = 10 liters
So, you need to add 10 liters of a 70% acid solution to the initial 10-liter 30% acid solution to achieve a 50% acid mixture.
```
**Evaluation Results:**
<table>
<thead>
<tr>
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
<th style="text-align:center; background-color: #001d6c; color: white;">ArenaHard</th>
<th style="text-align:center; background-color: #001d6c; color: white;">Alpaca-Eval-2</th>
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
<th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th>
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
<th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard</th>
<th style="text-align:center; background-color: #001d6c; color: white;">DROP</th>
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
<th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th>
<th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th>
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
<th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th>
</tr></thead>
<tbody>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">Llama-3.1-8B-Instruct</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">36.43</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">27.22</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">69.15</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">28.79</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">52.79</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">72.66</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">61.48</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">83.24</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.32</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">80.15</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.10</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">83.43</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Llama-8B</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">17.17</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">21.85</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">45.80</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">13.25</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">47.43</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">65.71</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">44.46</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">72.18</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">67.54</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">62.91</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.50</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">42.87</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">Qwen-2.5-7B-Instruct</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">25.44</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">74.30</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">18.12</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">63.06</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">70.40</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">54.71</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">84.46</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">93.35</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">89.91</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">74.90</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">81.90</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Qwen-7B</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">10.36</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">15.35</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">50.72</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">9.94</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">47.14</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">65.04</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">42.76</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">78.47</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.89</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">78.43</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">59.10</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">42.45</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-8B-Instruct</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">37.58</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.77</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">28.7</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">65.84</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">68.55</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">50.78</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.15</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">89.63</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.79</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">73.20</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.73</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-2B-Instruct</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">23.3</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">27.17</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">57.11</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">20.55</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">59.79</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">54.46</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">18.68</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">67.55</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.45</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">75.26</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">63.59</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">84.7</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.2-8B-Instruct</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">55.25</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">61.19</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.79</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">28.04</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.92</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">64.77</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">50.95</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">81.65</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">89.35</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.72</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">74.31</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.42</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.2-2B-Instruct</b></td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">24.86</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">34.51</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">57.18</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">20.56</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">59.8</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">52.27</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">21.12</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">67.02</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">80.13</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">73.39</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">61.55</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">83.23</td>
</tr>
</tbody></table>
**Training Data:**
Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites.
<!-- A detailed attribution of datasets can be found in [Granite 3.2 Technical Report (coming soon)](#), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf). -->
**Infrastructure:**
We train Granite-3.2-2B-Instruct using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
**Ethical Considerations and Limitations:**
Granite-3.2-2B-Instruct builds upon Granite-3.1-2B-Instruct, leveraging both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-3.1-2B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) remain relevant.
**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
<!-- ## Citation
```
@misc{granite-models,
author = {author 1, author2, ...},
title = {},
journal = {},
volume = {},
year = {2024},
url = {https://arxiv.org/abs/0000.00000},
}
``` -->
|