File size: 9,202 Bytes
af3ff8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: apache-2.0
language:
- en
base_model:
- Menlo/Jan-nano
pipeline_tag: text-generation
library_name: transformers
---

# <span style="color: #7FFF7F;">Jan-nano-128k GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`8846aace`](https://github.com/ggerganov/llama.cpp/commit/8846aace4934ad29651ea61b8c7e3f6b0556e3d2).





---

## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:  
👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)

While this does increase model file size, it significantly improves precision for a given quantization level.

### **I'd love your feedback—have you tried this? How does it perform for you?**




---

<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
  Click here to get info on choosing the right GGUF model format
</a>

---



<!--Begin Original Model Card-->


# Jan-Nano-128k: Empowering deeper research through extended context understanding.

[![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research) 
[![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://opensource.org/licenses/Apache-2.0)

<div align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/NP7CvcjOtLX8mST0t7eAM.png" width="300" alt="Jan-Nano-128k">
</div>

**Authors:** [Alan Dao](https://scholar.google.com/citations?user=eGWws2UAAAAJ&hl=en), [Bach Vu Dinh](https://scholar.google.com/citations?user=7Lr6hdoAAAAJ&hl=vi), [Thinh Le](https://scholar.google.com/citations?user=8tcN7xMAAAAJ&hl=en)


![image/gif](https://cdn-uploads.huggingface.co/production/uploads/62d7b2339b629105a5d6888a/aLL8fyMLE3ujV75qD4WKI.gif)


## Overview

Jan-Nano-128k represents a significant advancement in compact language models for research applications. Building upon the success of [Jan-Nano](https://huggingface.co/Menlo/Jan-nano), this enhanced version features a **native 128k context window** that enables deeper, more comprehensive research capabilities without the performance degradation typically associated with context extension methods.

**Key Improvements:**
- **🔍 Research Deeper**: Extended context allows for processing entire research papers, lengthy documents, and complex multi-turn conversations
- **⚡ Native 128k Window**: Built from the ground up to handle long contexts efficiently, maintaining performance across the full context range  
- **📈 Enhanced Performance**: Unlike traditional context extension methods, Jan-Nano-128k shows improved performance with longer contexts

This model maintains full compatibility with Model Context Protocol (MCP) servers while dramatically expanding the scope of research tasks it can handle in a single session.

## Evaluation

Jan-Nano-128k has been rigorously evaluated on the SimpleQA benchmark using our MCP-based methodology, demonstrating superior performance compared to its predecessor:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/Bc0ehij86l_NX52OfxeOj.png)

## Why Jan-Nano-128k?

Traditional approaches to extending context length, such as YaRN (Yet another RoPE extensioN), often result in performance degradation as context length increases. Jan-Nano-128k breaks this paradigm:

This fundamental difference makes Jan-Nano-128k ideal for research applications requiring deep document analysis, multi-document synthesis, and complex reasoning over large information sets.

## 🖥️ How to Run Locally

Jan desktop will eventually support this model (WIP). Otherwise you can check the deployment options below that we have tested.

For additional tutorials and community guidance, visit our [Discussion Forums](https://huggingface.co/Menlo/Jan-nano-128k/discussions).

### Deployment

Deploy using VLLM:
```bash
vllm serve Menlo/Jan-nano-128k \
    --host 0.0.0.0 \
    --port 1234 \
    --enable-auto-tool-choice \
    --tool-call-parser hermes \
    --rope-scaling '{"rope_type":"yarn","factor":3.2,"original_max_position_embeddings":40960}' --max-model-len 131072
```

Or `llama-server` from `llama.cpp`:
```bash
llama-server ... --rope-scaling yarn --rope-scale 3.2 --yarn-orig-ctx 40960
```
**Note:** The chat template is included in the tokenizer. For troubleshooting, download the [Non-think chat template](https://qwen.readthedocs.io/en/latest/_downloads/c101120b5bebcc2f12ec504fc93a965e/qwen3_nonthinking.jinja).

### Recommended Sampling Parameters

```yaml
Temperature: 0.7
Top-p: 0.8
Top-k: 20
Min-p: 0.0
```

## 🤝 Community & Support

- **Discussions**: [HuggingFace Community](https://huggingface.co/Menlo/Jan-nano-128k/discussions)
- **Issues**: [GitHub Repository](https://github.com/menloresearch/jan/issues)
- **Documentation**: [Official Docs](https://menloresearch.github.io/deep-research/)

## 📄 Citation

```bibtex
@model{jan-nano-128k,
  title={Jan-Nano-128k: Deep Research with Extended Context},
  author={Dao, Alan and Dinh, Bach Vu and Le Thinh},
  year={2024},
  url={https://huggingface.co/Menlo/Jan-nano-128k}
}
```

---

*Jan-Nano-128k: Empowering deeper research through extended context understanding.*

<!--End Original Model Card-->

---

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>

Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:  

👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)  


The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4.1-mini)  
   - `HugLLM` (Hugginface Open-source models)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap security scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. 
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

### 💡 **Example commands you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!

### Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.

If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊