File size: 23,480 Bytes
36be106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592d452
36be106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592d452
36be106
 
 
fa879ce
36be106
 
 
 
 
 
 
 
592d452
36be106
d2d1ebb
 
592d452
d2d1ebb
 
 
 
 
 
 
 
36be106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-1.7B-Base
---

# <span style="color: #7FFF7F;">Qwen3-1.7B GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`edbf42ed`](https://github.com/ggerganov/llama.cpp/commit/edbf42edfdabb9cea72ae12137570cf48f5d8076).





## **Choosing the Right Model Format**  

Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.  

### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**  
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.  
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.  
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).  
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.  

📌 **Use BF16 if:**  
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).  
✔ You want **higher precision** while saving memory.  
✔ You plan to **requantize** the model into another format.  

📌 **Avoid BF16 if:**  
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).  
❌ You need compatibility with older devices that lack BF16 optimization.  

---

### **F16 (Float 16) – More widely supported than BF16**  
- A 16-bit floating-point **high precision** but with less of range of values than BF16. 
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).  
- Slightly lower numerical precision than BF16 but generally sufficient for inference.  

📌 **Use F16 if:**  
✔ Your hardware supports **FP16** but **not BF16**.  
✔ You need a **balance between speed, memory usage, and accuracy**.  
✔ You are running on a **GPU** or another device optimized for FP16 computations.  

📌 **Avoid F16 if:**  
❌ Your device lacks **native FP16 support** (it may run slower than expected).  
❌ You have memory limitations.  

---

### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**  
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.  
- **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.  
- **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.  

📌 **Use Quantized Models if:**  
✔ You are running inference on a **CPU** and need an optimized model.  
✔ Your device has **low VRAM** and cannot load full-precision models.  
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.  

📌 **Avoid Quantized Models if:**  
❌ You need **maximum accuracy** (full-precision models are better for this).  
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).  

---

### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**  
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.  

- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.  
  - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.  
  - **Trade-off**: Lower accuracy compared to higher-bit quantizations.  

- **IQ3_S**: Small block size for **maximum memory efficiency**.  
  - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.  

- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.  
  - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.  

- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.  
  - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.  

- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.  
  - **Use case**: Best for **ARM-based devices** or **low-memory environments**.  

---

### **Summary Table: Model Format Selection**  

| Model Format  | Precision  | Memory Usage  | Device Requirements  | Best Use Case  |  
|--------------|------------|---------------|----------------------|---------------|  
| **BF16**     | Highest    | High          | BF16-supported GPU/CPUs  | High-speed inference with reduced memory |  
| **F16**      | High       | High          | FP16-supported devices | GPU inference when BF16 isn't available |  
| **Q4_K**     | Medium Low | Low           | CPU or Low-VRAM devices | Best for memory-constrained environments |  
| **Q6_K**     | Medium     | Moderate      | CPU with more memory | Better accuracy while still being quantized |  
| **Q8_0**     | High       | Moderate      | CPU or GPU with enough VRAM | Best accuracy among quantized models |  
| **IQ3_XS**   | Very Low   | Very Low      | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |  
| **Q4_0**     | Low        | Low           | ARM or low-memory devices | llama.cpp can optimize for ARM devices |  

---

## **Included Files & Details**  

### `Qwen3-1.7B-bf16.gguf`  
- Model weights preserved in **BF16**.  
- Use this if you want to **requantize** the model into a different format.  
- Best if your device supports **BF16 acceleration**.  

### `Qwen3-1.7B-f16.gguf`  
- Model weights stored in **F16**.  
- Use if your device supports **FP16**, especially if BF16 is not available.  

### `Qwen3-1.7B-bf16-q8_0.gguf`  
- **Output & embeddings** remain in **BF16**.  
- All other layers quantized to **Q8_0**.  
- Use if your device supports **BF16** and you want a quantized version.  

### `Qwen3-1.7B-f16-q8_0.gguf`  
- **Output & embeddings** remain in **F16**.  
- All other layers quantized to **Q8_0**.    

### `Qwen3-1.7B-q4_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q4_K**.  
- Good for **CPU inference** with limited memory.  

### `Qwen3-1.7B-q4_k_s.gguf`  
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.  
- Best for **very low-memory setups**.  

### `Qwen3-1.7B-q6_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q6_K** .  

### `Qwen3-1.7B-q8_0.gguf`  
- Fully **Q8** quantized model for better accuracy.  
- Requires **more memory** but offers higher precision.  

### `Qwen3-1.7B-iq3_xs.gguf`  
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.  
- Best for **ultra-low-memory devices**.  

### `Qwen3-1.7B-iq3_m.gguf`  
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.  
- Suitable for **low-memory devices**.  

### `Qwen3-1.7B-q4_0.gguf`  
- Pure **Q4_0** quantization, optimized for **ARM devices**.  
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
❤ **Please click "Like" if you find this useful!**  
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:  
👉 [Quantum Network Monitor](https://readyforquantum.com/dashboard/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)  

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4o-mini)  
   - `HugLLM` (Hugginface Open-source)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**)  
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4o-mini** for: 
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  
  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API  

### 💡 **Example commands to you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!

### Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.

If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊




# Qwen3-1.7B
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>

## Qwen3 Highlights

Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:

- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.

## Model Overview

**Qwen3-1.7B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 1.7B
- Number of Paramaters (Non-Embedding): 1.4B
- Number of Layers: 28
- Number of Attention Heads (GQA): 16 for Q and 8 for KV
- Context Length: 32,768

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).

> [!TIP]
> If you encounter significant endless repetitions, please refer to the [Best Practices](#best-practices) section for optimal sampling parameters, and set the ``presence_penalty`` to 1.5.

## Quickstart

The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.

With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3'
```

The following contains a code snippet illustrating how to use the model generate content based on given inputs. 
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen3-1.7B"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)
```

For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang:
    ```shell
    python -m sglang.launch_server --model-path Qwen/Qwen3-1.7B --reasoning-parser qwen3
    ```
- vLLM:
    ```shell
    vllm serve Qwen/Qwen3-1.7B --enable-reasoning --reasoning-parser deepseek_r1
    ```

For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.

## Switching Between Thinking and Non-Thinking Mode

> [!TIP]
> The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. 
> Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.

### `enable_thinking=True`

By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.

```python
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True  # True is the default value for enable_thinking
)
```

In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.

> [!NOTE]
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.


### `enable_thinking=False`

We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.

```python
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=False  # Setting enable_thinking=False disables thinking mode
)
```

In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.

> [!NOTE]
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.

### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input

We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.

Here is an example of a multi-turn conversation:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

class QwenChatbot:
    def __init__(self, model_name="Qwen/Qwen3-1.7B"):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        self.history = []

    def generate_response(self, user_input):
        messages = self.history + [{"role": "user", "content": user_input}]

        text = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )

        inputs = self.tokenizer(text, return_tensors="pt")
        response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
        response = self.tokenizer.decode(response_ids, skip_special_tokens=True)

        # Update history
        self.history.append({"role": "user", "content": user_input})
        self.history.append({"role": "assistant", "content": response})

        return response

# Example Usage
if __name__ == "__main__":
    chatbot = QwenChatbot()

    # First input (without /think or /no_think tags, thinking mode is enabled by default)
    user_input_1 = "How many r's in strawberries?"
    print(f"User: {user_input_1}")
    response_1 = chatbot.generate_response(user_input_1)
    print(f"Bot: {response_1}")
    print("----------------------")

    # Second input with /no_think
    user_input_2 = "Then, how many r's in blueberries? /no_think"
    print(f"User: {user_input_2}")
    response_2 = chatbot.generate_response(user_input_2)
    print(f"Bot: {response_2}") 
    print("----------------------")

    # Third input with /think
    user_input_3 = "Really? /think"
    print(f"User: {user_input_3}")
    response_3 = chatbot.generate_response(user_input_3)
    print(f"Bot: {response_3}")
```

> [!NOTE]
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.

## Agentic Use

Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.

To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant

# Define LLM
llm_cfg = {
    'model': 'Qwen3-1.7B',

    # Use the endpoint provided by Alibaba Model Studio:
    # 'model_type': 'qwen_dashscope',
    # 'api_key': os.getenv('DASHSCOPE_API_KEY'),

    # Use a custom endpoint compatible with OpenAI API:
    'model_server': 'http://localhost:8000/v1',  # api_base
    'api_key': 'EMPTY',

    # Other parameters:
    # 'generate_cfg': {
    #         # Add: When the response content is `<think>this is the thought</think>this is the answer;
    #         # Do not add: When the response has been separated by reasoning_content and content.
    #         'thought_in_content': True,
    #     },
}

# Define Tools
tools = [
    {'mcpServers': {  # You can specify the MCP configuration file
            'time': {
                'command': 'uvx',
                'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
            },
            "fetch": {
                "command": "uvx",
                "args": ["mcp-server-fetch"]
            }
        }
    },
  'code_interpreter',  # Built-in tools
]

# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)

# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
    pass
print(responses)
```

## Best Practices

To achieve optimal performance, we recommend the following settings:

1. **Sampling Parameters**:
   - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
   - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
   - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.

2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.

3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
   - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
   - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."

4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.

### Citation

If you find our work helpful, feel free to give us a cite.

```
@misc{qwen3technicalreport,
      title={Qwen3 Technical Report}, 
      author={Qwen Team},
      year={2025},
      eprint={2505.09388},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.09388}, 
}
```