Murasan commited on
Commit
09f390e
·
verified ·
1 Parent(s): 2effce7

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +162 -3
  2. best.onnx +3 -0
  3. best.pt +3 -0
  4. config.json +27 -0
README.md CHANGED
@@ -1,3 +1,162 @@
1
- ---
2
- license: agpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: agpl-3.0
3
+ library_name: ultralytics
4
+ tags:
5
+ - object-detection
6
+ - yolov8
7
+ - beetle
8
+ - insect
9
+ - computer-vision
10
+ datasets:
11
+ - roboflow
12
+ metrics:
13
+ - map
14
+ model-index:
15
+ - name: beetle-detection-yolov8
16
+ results:
17
+ - task:
18
+ type: object-detection
19
+ dataset:
20
+ type: beetle-detection
21
+ name: Beetle Detection Dataset
22
+ metrics:
23
+ - type: map
24
+ value: 0.9763
25
26
+ - type: map
27
+ value: 0.8956
28
+ name: [email protected]:0.95
29
+ ---
30
+
31
+ # YOLOv8 Beetle Detection Model
32
+
33
+ ## Model Description
34
+
35
+ This is a YOLOv8-based object detection model fine-tuned for beetle detection. The model was trained on a custom dataset of 500 beetle images from Roboflow and achieves excellent performance with [email protected] of 97.63%.
36
+
37
+ ## Model Details
38
+
39
+ - **Base Model**: YOLOv8n (nano) from Ultralytics
40
+ - **Task**: Object Detection
41
+ - **Classes**: 1 (beetle)
42
+ - **Input Size**: 640x640 pixels
43
+ - **Framework**: PyTorch
44
+ - **License**: AGPL-3.0 (inherited from YOLOv8)
45
+
46
+ ## Performance Metrics
47
+
48
+ | Metric | Value |
49
+ |--------|-------|
50
+ | [email protected] | 97.63% |
51
+ | [email protected]:0.95 | 89.56% |
52
+ | Precision | 95.2% |
53
+ | Recall | 94.8% |
54
+ | Processing Time (CPU) | ~100ms per image |
55
+
56
+ ## Dataset
57
+
58
+ - **Source**: Roboflow Universe
59
+ - **License**: CC BY 4.0
60
+ - **Images**: 500 annotated beetle images
61
+ - **Split**: 80% train, 15% validation, 5% test
62
+ - **Augmentations**: Applied during training for robustness
63
+
64
+ ## Usage
65
+
66
+ ### Installation
67
+
68
+ ```bash
69
+ pip install ultralytics
70
+ ```
71
+
72
+ ### Python Inference
73
+
74
+ ```python
75
+ from ultralytics import YOLO
76
+ import cv2
77
+
78
+ # Load the model
79
+ model = YOLO('best.pt')
80
+
81
+ # Run inference
82
+ results = model('path/to/image.jpg')
83
+
84
+ # Process results
85
+ for result in results:
86
+ boxes = result.boxes
87
+ for box in boxes:
88
+ # Get coordinates and confidence
89
+ x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
90
+ confidence = box.conf[0].cpu().numpy()
91
+
92
+ print(f"Beetle detected with confidence: {confidence:.2f}")
93
+ print(f"Bounding box: ({x1}, {y1}, {x2}, {y2})")
94
+ ```
95
+
96
+ ### Command Line
97
+
98
+ ```bash
99
+ yolo predict model=best.pt source='path/to/image.jpg'
100
+ ```
101
+
102
+ ## Training Details
103
+
104
+ - **Epochs**: 100
105
+ - **Batch Size**: 16
106
+ - **Optimizer**: AdamW
107
+ - **Learning Rate**: 0.01 (initial)
108
+ - **Hardware**: Google Colab GPU
109
+ - **Training Time**: ~2 hours
110
+
111
+ ## Applications
112
+
113
+ This model is designed for:
114
+ - Agricultural monitoring
115
+ - Entomological research
116
+ - Biodiversity studies
117
+ - Educational purposes
118
+ - IoT-based pest detection systems
119
+
120
+ ## Limitations
121
+
122
+ - Trained specifically on beetle images
123
+ - Performance may vary with different lighting conditions
124
+ - Best results with clear, well-lit images
125
+ - Single class detection only
126
+
127
+ ## Model Files
128
+
129
+ - `best.pt`: PyTorch model weights (recommended)
130
+ - `best.onnx`: ONNX format for cross-platform deployment
131
+
132
+ ## Citation
133
+
134
+ If you use this model in your research, please cite:
135
+
136
+ ```bibtex
137
+ @model{beetle-detection-yolov8,
138
+ title={YOLOv8 Beetle Detection Model},
139
+ author={Insect Detection Training Project},
140
+ year={2025},
141
+ url={https://huggingface.co/Murasan/beetle-detection-yolov8}
142
+ }
143
+ ```
144
+
145
+ ## License
146
+
147
+ This model is licensed under AGPL-3.0, inherited from the original YOLOv8 implementation by Ultralytics.
148
+
149
+ ### Base Model Attribution
150
+
151
+ - **YOLOv8**: [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics)
152
+ - **Original License**: AGPL-3.0
153
+ - **Paper**: [YOLOv8: A Real-Time Object Detection Algorithm](https://arxiv.org/abs/2305.09972)
154
+
155
+ ## Related Projects
156
+
157
+ - [Base Training Repository](https://github.com/Murasan201/insect-detection-training)
158
+ - [Hailo 8L Deployment Guide](https://github.com/Murasan201/insect-detection-training/blob/main/HAILO_DEPLOYMENT_GUIDE.md)
159
+
160
+ ## Contact
161
+
162
+ For questions or issues, please open an issue in the [base repository](https://github.com/Murasan201/insect-detection-training/issues).
best.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525f287cce769d9a74379fe69f4ecb240af7f53b8d951064272e16a113c88ca7
3
+ size 12251052
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91cec6142a7e08ecf632bdb8990f669df46c7b78c54fa1ba822c512d0a89c976
3
+ size 6255146
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "yolov8",
3
+ "framework": "ultralytics",
4
+ "task": "object-detection",
5
+ "classes": 1,
6
+ "class_names": ["beetle"],
7
+ "input_size": [640, 640],
8
+ "model_size": "nano",
9
+ "base_model": "yolov8n.pt",
10
+ "training": {
11
+ "epochs": 100,
12
+ "batch_size": 16,
13
+ "dataset_size": 500,
14
+ "train_split": 0.8,
15
+ "val_split": 0.15,
16
+ "test_split": 0.05
17
+ },
18
+ "performance": {
19
+ "map_50": 0.9763,
20
+ "map_50_95": 0.8956,
21
+ "precision": 0.952,
22
+ "recall": 0.948,
23
+ "processing_time_cpu_ms": 100
24
+ },
25
+ "license": "agpl-3.0",
26
+ "dataset_license": "cc-by-4.0"
27
+ }