HCZhang commited on
Commit
cbfa0b5
·
1 Parent(s): 60ab4d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -18
README.md CHANGED
@@ -23,34 +23,64 @@ The two versions are designed for different application scenarios.
23
  Jellyfish-13B is suitable for integration into larger data management systems due to its simple and clear responses that can be easily transformed into code.
24
  On the other hand, Jellyfish-13B-Interpreter is more user-oriented, with responses that provide them with in-depth data insights without the necessity for advanced coding skills or an intricate grasp of statistics.
25
 
26
- | Task | Dataset | Non-LLM SoTA<sup>1</sup> | GPT-3.5<sup>2</sup> | GPT-4<sup>2</sup> | Jellyfish-13B| Jellyfish-13B-Interpreter | Jellyfish-13B-1.1<sup>3</sup> |
27
- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
28
- | Entity Matching | Fodors-Zagats | 100 | 100 | 100 | 100 | 100 | 100 |
29
- | Entity Matching | Beer | 94.37| 96.30 | 100 | 93.33 | 100 | 96.55 |
30
- | Entity Matching | iTunes-Amazon | 97.06| 96.43 | 100 | 96.30 | 96.15 | 100 |
31
- | Entity Matching | Walmart-Amazon | 86.76| 86.17 | 90.27 | 80.71 | 85.16 | 89.18 |
32
- | Entity Matching | DBLP-ACM | 98.99| 96.99 | 97.44 | 97.35 | 95.74 | 99.32 |
33
- | Entity Matching | DBLP-GoogleScholar | 95.60| 76.12 | 91.87 | 92.83 | 89.45 | 95.16 |
34
- | Entity Matching | Amazon-Google | 75.58| 66.53 | 74.21 | 72.69 | 56.64 | 80.25 |
35
- | Data Imputation | Restaurant | 77.20| 94.19 | 97.67 | 94.19 | 93.02 | 93.02 |
36
- | Data Imputation | Buy | 96.50| 98.46 | 100 | 100 | 100 | 100 |
37
- | Error Detection | Hosptial | 99.10| 90.74 | 90.74 | 92.21 | 65.66 | 86.59 |
38
- | Error Detection | Adult | 94.40| 92.01 | 92.01 | 96.62 | 90.13 | 99.20 |
39
- | Schema Matching | Sythea | 38.50| 57.14 | 66.67 | 36.36 | 30.77 | NA |
40
-
 
 
 
 
 
 
 
 
 
 
 
 
41
  _Accuracy as the metric for data imputation and the F1 score for other tasks._
42
  _For GPT-3.5, GPT-4 we used the few-shot approach, while for Jellyfish and Jellyfish-Interpreter, the zero-shot approach was employed._
 
43
  1.
44
  [Ditto](https://arxiv.org/abs/2004.00584) for Entity Matching
45
  [SMAT](https://www.researchgate.net/publication/353920530_SMAT_An_Attention-Based_Deep_Learning_Solution_to_the_Automation_of_Schema_Matching) for Schema Matching
46
- [HoloDetect](https://arxiv.org/abs/1904.02285) for Error Detection
 
47
  [HoloClean](https://arxiv.org/abs/1702.00820) for Data Imputation
48
  2.
49
  [Large Language Models as Data Preprocessors](https://arxiv.org/abs/2308.16361)
50
- 3. Jellyfish-13B-1.1 is set to be the next iteration of Jellyfish-13B and is presently under development. We showcase its performance at this stage to highlight its impressive potential. As demonstrated in the table, it has already outperformed non-LLM methods on the majority of benchmark datasets. We've optimized the training data for this 1.1 version, and its release is on the horizon.
 
 
 
 
 
 
 
 
 
 
51
 
 
52
 
53
- **Jellyfish paper will be coming soon!**
 
 
 
 
 
54
 
55
  - **Developed by:** Haochen Zhang, Yuyang Dong, Chuan Xiao, Masafumi Oyamada
56
  - **Contact: [email protected]**
@@ -136,6 +166,15 @@ Attribute B is [name: {value of name}, description: {value of description}].
136
  Are Attribute A and Attribute B semantically equivalent? Choose your answer from: [Yes, No].
137
  ```
138
 
 
 
 
 
 
 
 
 
 
139
  ### JellyFish-13B-Interpreter
140
  #### For Entity Matching
141
  ```
 
23
  Jellyfish-13B is suitable for integration into larger data management systems due to its simple and clear responses that can be easily transformed into code.
24
  On the other hand, Jellyfish-13B-Interpreter is more user-oriented, with responses that provide them with in-depth data insights without the necessity for advanced coding skills or an intricate grasp of statistics.
25
 
26
+ More details about the model can be found in the [Jellyfish paper](linktobeadded).
27
+
28
+ ## Performance on seen tasks
29
+
30
+ | Task | Type | Dataset | Non-LLM SoTA<sup>1</sup> | GPT-3.5<sup>2</sup> | GPT-4<sup>2</sup> | Jellyfish-13B-1.1<sup>3</sup>| Jellyfish-13B-Interpreter |
31
+ | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
32
+ | Entity Matching | Seen | Fodors-Zagats | 100 | 100 | 100 | 100 | 100 |
33
+ | Entity Matching | Seen | Beer | 94.37| 96.30 | 100 | 96.77 | 100 |
34
+ | Entity Matching | Seen | iTunes-Amazon | 97.06| 96.43 | 100 | 98.11 | 96.15 |
35
+ | Entity Matching | Seen | DBLP-ACM | 98.99| 96.99 | 97.44 | 98.98 | 95.74 |
36
+ | Entity Matching | Seen | DBLP-GoogleScholar | 95.60| 76.12 | 91.87 | 98.51 | 89.45 |
37
+ | Entity Matching | Seen | Amazon-Google | 75.58| 66.53 | 74.21 | 81.34 | 56.64 |
38
+ | Entity Matching | Unseen | Walmart-Amazon | 86.76| 86.17 | 90.27 | 89.42 | 85.16 |
39
+ | Entity Matching | Unseen | Abt-Buy | 89.33 | -- | 92.77 | 89.58 | -- |
40
+ | Data Imputation | Seen | Restaurant | 77.20| 94.19 | 97.67 | 94.19 | 93.02 |
41
+ | Data Imputation | Seen | Buy | 96.50| 98.46 | 100 | 100 | 100 |
42
+ | Data Imputation | Unseen | Filpkart | 68.00 | -- | 89.94 | 81.68 | -- |
43
+ | Data Imputation | Unseen | Phone | 86.70| -- | 90.79 | 87.21 | -- |
44
+ | Error Detection | Seen | Hosptial | 94.40| 90.74 | 90.74 | 95.59 | 65.66 |
45
+ | Error Detection | Seen | Adult | 99.10| 92.01 | 92.01 | 99.33 | 90.13 |
46
+ | Error Detection | Unseen | Flights | 81.00 | -- | 83.48 | 82.52 | -- |
47
+ | Error Detection | Unseen | Rayyan | 79.00| -- | 81.95 | 90.65 | -- |
48
+ | Schema Matching | Seen | Sythea | 38.50| 57.14 | 66.67 | 36.36 | 30.77 |
49
+ | Schema Matching | Seen | MIMIC | 20.00| -- | 40.00 | 40.00 | -- |
50
+ | Schema Matching | Unseen | CMS | 50.00| -- | 19.35 | 59.29 | -- |
51
+
52
+ _Few-shot is disabled for Jellyfish-13B on seen datasets and enabled on unseen datasets._
53
  _Accuracy as the metric for data imputation and the F1 score for other tasks._
54
  _For GPT-3.5, GPT-4 we used the few-shot approach, while for Jellyfish and Jellyfish-Interpreter, the zero-shot approach was employed._
55
+
56
  1.
57
  [Ditto](https://arxiv.org/abs/2004.00584) for Entity Matching
58
  [SMAT](https://www.researchgate.net/publication/353920530_SMAT_An_Attention-Based_Deep_Learning_Solution_to_the_Automation_of_Schema_Matching) for Schema Matching
59
+ [HoloDetect](https://arxiv.org/abs/1904.02285) for Error Detection seen datasets
60
+ [RAHA](https://dl.acm.org/doi/10.1145/3299869.3324956) for Error Detection unseen datasets
61
  [HoloClean](https://arxiv.org/abs/1702.00820) for Data Imputation
62
  2.
63
  [Large Language Models as Data Preprocessors](https://arxiv.org/abs/2308.16361)
64
+ 3. We have updated the main branch with Jellyfish-13B version 1.1 .
65
+
66
+ ## Performance on unseen tasks
67
+
68
+ ### Column Type Annotation
69
+
70
+ | Dataset | RoBERTa (159 shots)<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 | Jellfish-13B-1.1 |
71
+ | ---- | ---- | ---- | ---- | ---- |
72
+ | SOTAB | 79.20 | 89.47 | 91.55 | 82.00 |
73
+
74
+ 1. Results from [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745)
75
 
76
+ ### Attribute Value Extraction
77
 
78
+ | Dataset |Stable Beluga 2 70B<sup>1</sup> | SOLAR 70B<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 <sup>1</sup>| Jellfish-13B-1.1 |
79
+ | ---- | ---- | ---- | ---- | ---- | ---- |
80
+ | AE-110k | 52.10 | 49.20 | 61.30 | 55.50 | 58.12 |
81
+ | OA-Mine | 50.80 | 55.20 | 62.70 | 68.90 | 55.96 |
82
+
83
+ 1. Results from [Product Attribute Value Extraction using Large Language Models](https://arxiv.org/abs/2310.12537)
84
 
85
  - **Developed by:** Haochen Zhang, Yuyang Dong, Chuan Xiao, Masafumi Oyamada
86
  - **Contact: [email protected]**
 
166
  Are Attribute A and Attribute B semantically equivalent? Choose your answer from: [Yes, No].
167
  ```
168
 
169
+ ### For Column Type Annotation
170
+
171
+ We follow the prompt in [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745) (text+inst+2-step).
172
+
173
+ ### For Attribute Value Extraction
174
+
175
+ We follow the prompt in [Product Attribute Value Extraction using Large Language Models](https://arxiv.org/abs/2310.12537) (textual, w/o examples).
176
+
177
+
178
  ### JellyFish-13B-Interpreter
179
  #### For Entity Matching
180
  ```