Delete results(test1,2,3).md
Browse files- results(test1,2,3).md +0 -177
results(test1,2,3).md
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
## LSTM
|
2 |
-
|
3 |
-
### test1
|
4 |
-
- Precision: 0.2195
|
5 |
-
- Recall: 0.3333
|
6 |
-
- F1: 0.2647
|
7 |
-
- Accuracy: 0.6585
|
8 |
-
- Confusion matrix: [[0, 165, 0], [0, 430, 0], [0, 58, 0]]
|
9 |
-
|
10 |
-
Full classification report:
|
11 |
-
precision recall f1-score support
|
12 |
-
|
13 |
-
positive 0.0000 0.0000 0.0000 165
|
14 |
-
neutral 0.6585 1.0000 0.7941 430
|
15 |
-
negative 0.0000 0.0000 0.0000 58
|
16 |
-
|
17 |
-
accuracy 0.6585 653
|
18 |
-
macro avg 0.2195 0.3333 0.2647 653
|
19 |
-
weighted avg 0.4336 0.6585 0.5229 653
|
20 |
-
|
21 |
-
|
22 |
-
### test2
|
23 |
-
- Precision: 0.1939
|
24 |
-
- Recall: 0.3333
|
25 |
-
- F1: 0.2452
|
26 |
-
- Accuracy: 0.5816
|
27 |
-
- Confusion matrix: [[0, 216, 0], [0, 431, 0], [0, 94, 0]]
|
28 |
-
|
29 |
-
Full classification report:
|
30 |
-
precision recall f1-score support
|
31 |
-
|
32 |
-
positive 0.0000 0.0000 0.0000 216
|
33 |
-
neutral 0.5816 1.0000 0.7355 431
|
34 |
-
negative 0.0000 0.0000 0.0000 94
|
35 |
-
|
36 |
-
accuracy 0.5816 741
|
37 |
-
macro avg 0.1939 0.3333 0.2452 741
|
38 |
-
weighted avg 0.3383 0.5816 0.4278 741
|
39 |
-
|
40 |
-
|
41 |
-
### test3
|
42 |
-
- Precision: 0.1106
|
43 |
-
- Recall: 0.3333
|
44 |
-
- F1: 0.1660
|
45 |
-
- Accuracy: 0.3317
|
46 |
-
- Confusion matrix: [[0, 267, 0], [0, 263, 0], [0, 263, 0]]
|
47 |
-
|
48 |
-
Full classification report:
|
49 |
-
precision recall f1-score support
|
50 |
-
|
51 |
-
positive 0.0000 0.0000 0.0000 267
|
52 |
-
neutral 0.3317 1.0000 0.4981 263
|
53 |
-
negative 0.0000 0.0000 0.0000 263
|
54 |
-
|
55 |
-
accuracy 0.3317 793
|
56 |
-
macro avg 0.1106 0.3333 0.1660 793
|
57 |
-
weighted avg 0.1100 0.3317 0.1652 793
|
58 |
-
|
59 |
-
|
60 |
-
## GRU
|
61 |
-
|
62 |
-
### test1
|
63 |
-
- Precision: 0.4470
|
64 |
-
- Recall: 0.4538
|
65 |
-
- F1: 0.4485
|
66 |
-
- Accuracy: 0.6064
|
67 |
-
- Confusion matrix: [[86, 69, 10], [97, 302, 31], [16, 34, 8]]
|
68 |
-
|
69 |
-
Full classification report:
|
70 |
-
precision recall f1-score support
|
71 |
-
|
72 |
-
positive 0.4322 0.5212 0.4725 165
|
73 |
-
neutral 0.7457 0.7023 0.7234 430
|
74 |
-
negative 0.1633 0.1379 0.1495 58
|
75 |
-
|
76 |
-
accuracy 0.6064 653
|
77 |
-
macro avg 0.4470 0.4538 0.4485 653
|
78 |
-
weighted avg 0.6147 0.6064 0.6090 653
|
79 |
-
|
80 |
-
|
81 |
-
### test2
|
82 |
-
- Precision: 0.8557
|
83 |
-
- Recall: 0.8500
|
84 |
-
- F1: 0.8527
|
85 |
-
- Accuracy: 0.8880
|
86 |
-
- Confusion matrix: [[191, 19, 6], [20, 397, 14], [9, 15, 70]]
|
87 |
-
|
88 |
-
Full classification report:
|
89 |
-
precision recall f1-score support
|
90 |
-
|
91 |
-
positive 0.8682 0.8843 0.8761 216
|
92 |
-
neutral 0.9211 0.9211 0.9211 431
|
93 |
-
negative 0.7778 0.7447 0.7609 94
|
94 |
-
|
95 |
-
accuracy 0.8880 741
|
96 |
-
macro avg 0.8557 0.8500 0.8527 741
|
97 |
-
weighted avg 0.8875 0.8880 0.8877 741
|
98 |
-
|
99 |
-
|
100 |
-
### test3
|
101 |
-
- Precision: 0.6896
|
102 |
-
- Recall: 0.6454
|
103 |
-
- F1: 0.6251
|
104 |
-
- Accuracy: 0.6456
|
105 |
-
- Confusion matrix: [[187, 58, 22], [21, 237, 5], [41, 134, 88]]
|
106 |
-
|
107 |
-
Full classification report:
|
108 |
-
precision recall f1-score support
|
109 |
-
|
110 |
-
positive 0.7510 0.7004 0.7248 267
|
111 |
-
neutral 0.5524 0.9011 0.6850 263
|
112 |
-
negative 0.7652 0.3346 0.4656 263
|
113 |
-
|
114 |
-
accuracy 0.6456 793
|
115 |
-
macro avg 0.6896 0.6454 0.6251 793
|
116 |
-
weighted avg 0.6899 0.6456 0.6256 793
|
117 |
-
|
118 |
-
|
119 |
-
## CNN
|
120 |
-
|
121 |
-
### test1
|
122 |
-
- Precision: 0.6103
|
123 |
-
- Recall: 0.4595
|
124 |
-
- F1: 0.4816
|
125 |
-
- Accuracy: 0.6692
|
126 |
-
- Confusion matrix: [[61, 103, 1], [59, 367, 4], [11, 38, 9]]
|
127 |
-
|
128 |
-
Full classification report:
|
129 |
-
precision recall f1-score support
|
130 |
-
|
131 |
-
positive 0.4656 0.3697 0.4122 165
|
132 |
-
neutral 0.7224 0.8535 0.7825 430
|
133 |
-
negative 0.6429 0.1552 0.2500 58
|
134 |
-
|
135 |
-
accuracy 0.6692 653
|
136 |
-
macro avg 0.6103 0.4595 0.4816 653
|
137 |
-
weighted avg 0.6505 0.6692 0.6416 653
|
138 |
-
|
139 |
-
|
140 |
-
### test2
|
141 |
-
- Precision: 0.9077
|
142 |
-
- Recall: 0.8366
|
143 |
-
- F1: 0.8659
|
144 |
-
- Accuracy: 0.8988
|
145 |
-
- Confusion matrix: [[180, 33, 3], [9, 420, 2], [11, 17, 66]]
|
146 |
-
|
147 |
-
Full classification report:
|
148 |
-
precision recall f1-score support
|
149 |
-
|
150 |
-
positive 0.9000 0.8333 0.8654 216
|
151 |
-
neutral 0.8936 0.9745 0.9323 431
|
152 |
-
negative 0.9296 0.7021 0.8000 94
|
153 |
-
|
154 |
-
accuracy 0.8988 741
|
155 |
-
macro avg 0.9077 0.8366 0.8659 741
|
156 |
-
weighted avg 0.9000 0.8988 0.8960 741
|
157 |
-
|
158 |
-
|
159 |
-
### test3
|
160 |
-
- Precision: 0.7336
|
161 |
-
- Recall: 0.5839
|
162 |
-
- F1: 0.5465
|
163 |
-
- Accuracy: 0.5839
|
164 |
-
- Confusion matrix: [[152, 109, 6], [5, 258, 0], [25, 185, 53]]
|
165 |
-
|
166 |
-
Full classification report:
|
167 |
-
precision recall f1-score support
|
168 |
-
|
169 |
-
positive 0.8352 0.5693 0.6771 267
|
170 |
-
neutral 0.4674 0.9810 0.6331 263
|
171 |
-
negative 0.8983 0.2015 0.3292 263
|
172 |
-
|
173 |
-
accuracy 0.5839 793
|
174 |
-
macro avg 0.7336 0.5839 0.5465 793
|
175 |
-
weighted avg 0.7341 0.5839 0.5471 793
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|