Upload 2 files
Browse files- code (test1,2,3).ipynb +548 -0
- results(test1,2,3).md +177 -0
code (test1,2,3).ipynb
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "6c9745be",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/urllib3/__init__.py:35: NotOpenSSLWarning: urllib3 v2 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
|
14 |
+
" warnings.warn(\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"\n",
|
22 |
+
"LSTM training...\n",
|
23 |
+
"LSTM Epoch 1: Train loss 0.9225 | Validation loss 0.9003\n",
|
24 |
+
"LSTM Epoch 5: Train loss 0.9064 | Validation loss 0.8971\n",
|
25 |
+
"LSTM Epoch 10: Train loss 0.9024 | Validation loss 0.8979\n",
|
26 |
+
"LSTM Epoch 15: Train loss 0.9013 | Validation loss 0.8975\n",
|
27 |
+
"LSTM Epoch 20: Train loss 0.9458 | Validation loss 0.9297\n",
|
28 |
+
"LSTM Epoch 25: Train loss 0.9019 | Validation loss 0.9019\n",
|
29 |
+
"LSTM Epoch 30: Train loss 0.9034 | Validation loss 0.9004\n",
|
30 |
+
"LSTM Epoch 35: Train loss 0.9002 | Validation loss 0.9023\n",
|
31 |
+
"LSTM Epoch 40: Train loss 0.8989 | Validation loss 0.9054\n",
|
32 |
+
"LSTM Epoch 45: Train loss 0.8987 | Validation loss 0.9030\n",
|
33 |
+
"LSTM Epoch 50: Train loss 0.8978 | Validation loss 0.9007\n"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
41 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
42 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
43 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
44 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
45 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
46 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
47 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
48 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
49 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
50 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
51 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
52 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
53 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
54 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
55 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
56 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
57 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"name": "stdout",
|
62 |
+
"output_type": "stream",
|
63 |
+
"text": [
|
64 |
+
"\n",
|
65 |
+
"LSTM on test1 Classification report:\n",
|
66 |
+
" precision recall f1-score support\n",
|
67 |
+
"\n",
|
68 |
+
" positive 0.0000 0.0000 0.0000 165\n",
|
69 |
+
" neutral 0.6585 1.0000 0.7941 430\n",
|
70 |
+
" negative 0.0000 0.0000 0.0000 58\n",
|
71 |
+
"\n",
|
72 |
+
" accuracy 0.6585 653\n",
|
73 |
+
" macro avg 0.2195 0.3333 0.2647 653\n",
|
74 |
+
"weighted avg 0.4336 0.6585 0.5229 653\n",
|
75 |
+
"\n",
|
76 |
+
"LSTM on test1 Confusion matrix:\n",
|
77 |
+
" [[ 0 165 0]\n",
|
78 |
+
" [ 0 430 0]\n",
|
79 |
+
" [ 0 58 0]]\n"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"name": "stderr",
|
84 |
+
"output_type": "stream",
|
85 |
+
"text": [
|
86 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
87 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
88 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
89 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
90 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
91 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
92 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
93 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
94 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
95 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
96 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
97 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
98 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
99 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
100 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
101 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
102 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
103 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"name": "stdout",
|
108 |
+
"output_type": "stream",
|
109 |
+
"text": [
|
110 |
+
"\n",
|
111 |
+
"LSTM on test2 Classification report:\n",
|
112 |
+
" precision recall f1-score support\n",
|
113 |
+
"\n",
|
114 |
+
" positive 0.0000 0.0000 0.0000 216\n",
|
115 |
+
" neutral 0.5816 1.0000 0.7355 431\n",
|
116 |
+
" negative 0.0000 0.0000 0.0000 94\n",
|
117 |
+
"\n",
|
118 |
+
" accuracy 0.5816 741\n",
|
119 |
+
" macro avg 0.1939 0.3333 0.2452 741\n",
|
120 |
+
"weighted avg 0.3383 0.5816 0.4278 741\n",
|
121 |
+
"\n",
|
122 |
+
"LSTM on test2 Confusion matrix:\n",
|
123 |
+
" [[ 0 216 0]\n",
|
124 |
+
" [ 0 431 0]\n",
|
125 |
+
" [ 0 94 0]]\n"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"name": "stderr",
|
130 |
+
"output_type": "stream",
|
131 |
+
"text": [
|
132 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
133 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
134 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
135 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
136 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
137 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
138 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
139 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
140 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
141 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
142 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
143 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
144 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
145 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
146 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
147 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
148 |
+
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
149 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"name": "stdout",
|
154 |
+
"output_type": "stream",
|
155 |
+
"text": [
|
156 |
+
"\n",
|
157 |
+
"LSTM on test3 Classification report:\n",
|
158 |
+
" precision recall f1-score support\n",
|
159 |
+
"\n",
|
160 |
+
" positive 0.0000 0.0000 0.0000 267\n",
|
161 |
+
" neutral 0.3317 1.0000 0.4981 263\n",
|
162 |
+
" negative 0.0000 0.0000 0.0000 263\n",
|
163 |
+
"\n",
|
164 |
+
" accuracy 0.3317 793\n",
|
165 |
+
" macro avg 0.1106 0.3333 0.1660 793\n",
|
166 |
+
"weighted avg 0.1100 0.3317 0.1652 793\n",
|
167 |
+
"\n",
|
168 |
+
"LSTM on test3 Confusion matrix:\n",
|
169 |
+
" [[ 0 267 0]\n",
|
170 |
+
" [ 0 263 0]\n",
|
171 |
+
" [ 0 263 0]]\n",
|
172 |
+
"\n",
|
173 |
+
"GRU training...\n",
|
174 |
+
"GRU Epoch 1: Train loss 0.9163 | Validation loss 0.8981\n",
|
175 |
+
"GRU Epoch 5: Train loss 0.9048 | Validation loss 0.8972\n",
|
176 |
+
"GRU Epoch 10: Train loss 0.8214 | Validation loss 0.8023\n",
|
177 |
+
"GRU Epoch 15: Train loss 0.7494 | Validation loss 0.7687\n",
|
178 |
+
"GRU Epoch 20: Train loss 0.6789 | Validation loss 0.7580\n",
|
179 |
+
"GRU Epoch 25: Train loss 0.5857 | Validation loss 0.8096\n",
|
180 |
+
"GRU Epoch 30: Train loss 0.4784 | Validation loss 0.9778\n",
|
181 |
+
"GRU Epoch 35: Train loss 0.3589 | Validation loss 1.1809\n",
|
182 |
+
"GRU Epoch 40: Train loss 0.2612 | Validation loss 1.3460\n",
|
183 |
+
"GRU Epoch 45: Train loss 0.1947 | Validation loss 1.4596\n",
|
184 |
+
"GRU Epoch 50: Train loss 0.1336 | Validation loss 1.7536\n",
|
185 |
+
"\n",
|
186 |
+
"GRU on test1 Classification report:\n",
|
187 |
+
" precision recall f1-score support\n",
|
188 |
+
"\n",
|
189 |
+
" positive 0.4322 0.5212 0.4725 165\n",
|
190 |
+
" neutral 0.7457 0.7023 0.7234 430\n",
|
191 |
+
" negative 0.1633 0.1379 0.1495 58\n",
|
192 |
+
"\n",
|
193 |
+
" accuracy 0.6064 653\n",
|
194 |
+
" macro avg 0.4470 0.4538 0.4485 653\n",
|
195 |
+
"weighted avg 0.6147 0.6064 0.6090 653\n",
|
196 |
+
"\n",
|
197 |
+
"GRU on test1 Confusion matrix:\n",
|
198 |
+
" [[ 86 69 10]\n",
|
199 |
+
" [ 97 302 31]\n",
|
200 |
+
" [ 16 34 8]]\n",
|
201 |
+
"\n",
|
202 |
+
"GRU on test2 Classification report:\n",
|
203 |
+
" precision recall f1-score support\n",
|
204 |
+
"\n",
|
205 |
+
" positive 0.8682 0.8843 0.8761 216\n",
|
206 |
+
" neutral 0.9211 0.9211 0.9211 431\n",
|
207 |
+
" negative 0.7778 0.7447 0.7609 94\n",
|
208 |
+
"\n",
|
209 |
+
" accuracy 0.8880 741\n",
|
210 |
+
" macro avg 0.8557 0.8500 0.8527 741\n",
|
211 |
+
"weighted avg 0.8875 0.8880 0.8877 741\n",
|
212 |
+
"\n",
|
213 |
+
"GRU on test2 Confusion matrix:\n",
|
214 |
+
" [[191 19 6]\n",
|
215 |
+
" [ 20 397 14]\n",
|
216 |
+
" [ 9 15 70]]\n",
|
217 |
+
"\n",
|
218 |
+
"GRU on test3 Classification report:\n",
|
219 |
+
" precision recall f1-score support\n",
|
220 |
+
"\n",
|
221 |
+
" positive 0.7510 0.7004 0.7248 267\n",
|
222 |
+
" neutral 0.5524 0.9011 0.6850 263\n",
|
223 |
+
" negative 0.7652 0.3346 0.4656 263\n",
|
224 |
+
"\n",
|
225 |
+
" accuracy 0.6456 793\n",
|
226 |
+
" macro avg 0.6896 0.6454 0.6251 793\n",
|
227 |
+
"weighted avg 0.6899 0.6456 0.6256 793\n",
|
228 |
+
"\n",
|
229 |
+
"GRU on test3 Confusion matrix:\n",
|
230 |
+
" [[187 58 22]\n",
|
231 |
+
" [ 21 237 5]\n",
|
232 |
+
" [ 41 134 88]]\n",
|
233 |
+
"\n",
|
234 |
+
"CNN training...\n",
|
235 |
+
"CNN Epoch 1: Train loss 0.9112 | Validation loss 0.8838\n",
|
236 |
+
"CNN Epoch 5: Train loss 0.8149 | Validation loss 0.8114\n",
|
237 |
+
"CNN Epoch 10: Train loss 0.7071 | Validation loss 0.7645\n",
|
238 |
+
"CNN Epoch 15: Train loss 0.6159 | Validation loss 0.7597\n",
|
239 |
+
"CNN Epoch 20: Train loss 0.5508 | Validation loss 0.7568\n",
|
240 |
+
"CNN Epoch 25: Train loss 0.4648 | Validation loss 0.7638\n",
|
241 |
+
"CNN Epoch 30: Train loss 0.4148 | Validation loss 0.7818\n",
|
242 |
+
"CNN Epoch 35: Train loss 0.3572 | Validation loss 0.8047\n",
|
243 |
+
"CNN Epoch 40: Train loss 0.3099 | Validation loss 0.8082\n",
|
244 |
+
"CNN Epoch 45: Train loss 0.2741 | Validation loss 0.8595\n",
|
245 |
+
"CNN Epoch 50: Train loss 0.2376 | Validation loss 0.9191\n",
|
246 |
+
"\n",
|
247 |
+
"CNN on test1 Classification report:\n",
|
248 |
+
" precision recall f1-score support\n",
|
249 |
+
"\n",
|
250 |
+
" positive 0.4656 0.3697 0.4122 165\n",
|
251 |
+
" neutral 0.7224 0.8535 0.7825 430\n",
|
252 |
+
" negative 0.6429 0.1552 0.2500 58\n",
|
253 |
+
"\n",
|
254 |
+
" accuracy 0.6692 653\n",
|
255 |
+
" macro avg 0.6103 0.4595 0.4816 653\n",
|
256 |
+
"weighted avg 0.6505 0.6692 0.6416 653\n",
|
257 |
+
"\n",
|
258 |
+
"CNN on test1 Confusion matrix:\n",
|
259 |
+
" [[ 61 103 1]\n",
|
260 |
+
" [ 59 367 4]\n",
|
261 |
+
" [ 11 38 9]]\n",
|
262 |
+
"\n",
|
263 |
+
"CNN on test2 Classification report:\n",
|
264 |
+
" precision recall f1-score support\n",
|
265 |
+
"\n",
|
266 |
+
" positive 0.9000 0.8333 0.8654 216\n",
|
267 |
+
" neutral 0.8936 0.9745 0.9323 431\n",
|
268 |
+
" negative 0.9296 0.7021 0.8000 94\n",
|
269 |
+
"\n",
|
270 |
+
" accuracy 0.8988 741\n",
|
271 |
+
" macro avg 0.9077 0.8366 0.8659 741\n",
|
272 |
+
"weighted avg 0.9000 0.8988 0.8960 741\n",
|
273 |
+
"\n",
|
274 |
+
"CNN on test2 Confusion matrix:\n",
|
275 |
+
" [[180 33 3]\n",
|
276 |
+
" [ 9 420 2]\n",
|
277 |
+
" [ 11 17 66]]\n",
|
278 |
+
"\n",
|
279 |
+
"CNN on test3 Classification report:\n",
|
280 |
+
" precision recall f1-score support\n",
|
281 |
+
"\n",
|
282 |
+
" positive 0.8352 0.5693 0.6771 267\n",
|
283 |
+
" neutral 0.4674 0.9810 0.6331 263\n",
|
284 |
+
" negative 0.8983 0.2015 0.3292 263\n",
|
285 |
+
"\n",
|
286 |
+
" accuracy 0.5839 793\n",
|
287 |
+
" macro avg 0.7336 0.5839 0.5465 793\n",
|
288 |
+
"weighted avg 0.7341 0.5839 0.5471 793\n",
|
289 |
+
"\n",
|
290 |
+
"CNN on test3 Confusion matrix:\n",
|
291 |
+
" [[152 109 6]\n",
|
292 |
+
" [ 5 258 0]\n",
|
293 |
+
" [ 25 185 53]]\n"
|
294 |
+
]
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"source": [
|
298 |
+
"# !pip install gensim scikit-learn pandas numpy torch tqdm\n",
|
299 |
+
"\n",
|
300 |
+
"import pandas as pd\n",
|
301 |
+
"import numpy as np\n",
|
302 |
+
"import torch\n",
|
303 |
+
"import torch.nn as nn\n",
|
304 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
305 |
+
"from sklearn.metrics import classification_report, confusion_matrix\n",
|
306 |
+
"from sklearn.model_selection import train_test_split\n",
|
307 |
+
"from collections import Counter\n",
|
308 |
+
"import gensim\n",
|
309 |
+
"\n",
|
310 |
+
"# --- UČITAVANJE I PODJELA PODATAKA ---\n",
|
311 |
+
"full_df = pd.read_csv('TRAIN.csv')\n",
|
312 |
+
"\n",
|
313 |
+
"# Učitaj sve test skupove\n",
|
314 |
+
"test1_df = pd.read_csv('test-1.csv')\n",
|
315 |
+
"test2_df = pd.read_csv('test-2.csv')\n",
|
316 |
+
"test3_df = pd.read_csv('test-3.csv')\n",
|
317 |
+
"\n",
|
318 |
+
"def get_text_column(df):\n",
|
319 |
+
" for col in df.columns:\n",
|
320 |
+
" if col.lower() in ['sentence', 'text']:\n",
|
321 |
+
" return col\n",
|
322 |
+
" raise ValueError(\"Nema stupca 'Sentence' ili 'Text'!\")\n",
|
323 |
+
"\n",
|
324 |
+
"text_col = get_text_column(full_df)\n",
|
325 |
+
"\n",
|
326 |
+
"# Stratified split: 95% train, 5% valid\n",
|
327 |
+
"train_df, valid_df = train_test_split(full_df, test_size=0.05, stratify=full_df['Label'], random_state=42)\n",
|
328 |
+
"\n",
|
329 |
+
"# --- TOKENIZACIJA I VOKABULAR ---\n",
|
330 |
+
"def tokenize(text):\n",
|
331 |
+
" return text.lower().split()\n",
|
332 |
+
"\n",
|
333 |
+
"counter = Counter()\n",
|
334 |
+
"for text in train_df[text_col]:\n",
|
335 |
+
" counter.update(tokenize(text))\n",
|
336 |
+
"vocab = {word: idx+2 for idx, (word, _) in enumerate(counter.most_common())}\n",
|
337 |
+
"vocab['<unk>'] = 0\n",
|
338 |
+
"vocab['<pad>'] = 1\n",
|
339 |
+
"\n",
|
340 |
+
"# --- EMBEDDING ---\n",
|
341 |
+
"from gensim.models.fasttext import load_facebook_model\n",
|
342 |
+
"\n",
|
343 |
+
"embedding_path = 'cc.hr.300.bin'\n",
|
344 |
+
"ft_model = load_facebook_model(embedding_path)\n",
|
345 |
+
"embeddings = ft_model.wv \n",
|
346 |
+
"\n",
|
347 |
+
"embedding_dim = embeddings.vector_size\n",
|
348 |
+
"embedding_matrix = np.zeros((len(vocab), embedding_dim))\n",
|
349 |
+
"for word, idx in vocab.items():\n",
|
350 |
+
" if word in embeddings:\n",
|
351 |
+
" embedding_matrix[idx] = embeddings[word]\n",
|
352 |
+
" else:\n",
|
353 |
+
" embedding_matrix[idx] = np.random.normal(scale=0.6, size=(embedding_dim, ))\n",
|
354 |
+
"\n",
|
355 |
+
"# --- DATASET ---\n",
|
356 |
+
"class TextDataset(Dataset):\n",
|
357 |
+
" def __init__(self, df, text_col, vocab, max_len=50):\n",
|
358 |
+
" self.texts = df[text_col].tolist()\n",
|
359 |
+
" self.labels = df['Label'].tolist()\n",
|
360 |
+
" self.vocab = vocab\n",
|
361 |
+
" self.max_len = max_len\n",
|
362 |
+
" def __len__(self):\n",
|
363 |
+
" return len(self.texts)\n",
|
364 |
+
" def __getitem__(self, idx):\n",
|
365 |
+
" tokens = tokenize(self.texts[idx])\n",
|
366 |
+
" ids = [self.vocab.get(token, self.vocab['<unk>']) for token in tokens][:self.max_len]\n",
|
367 |
+
" ids += [self.vocab['<pad>']] * (self.max_len - len(ids))\n",
|
368 |
+
" return torch.tensor(ids), torch.tensor(self.labels[idx])\n",
|
369 |
+
"\n",
|
370 |
+
"max_len = 50\n",
|
371 |
+
"batch_size = 32\n",
|
372 |
+
"train_ds = TextDataset(train_df, text_col, vocab, max_len)\n",
|
373 |
+
"valid_ds = TextDataset(valid_df, text_col, vocab, max_len)\n",
|
374 |
+
"\n",
|
375 |
+
"test1_text_col = get_text_column(test1_df)\n",
|
376 |
+
"test2_text_col = get_text_column(test2_df)\n",
|
377 |
+
"test3_text_col = get_text_column(test3_df)\n",
|
378 |
+
"\n",
|
379 |
+
"test1_ds = TextDataset(test1_df, test1_text_col, vocab, max_len)\n",
|
380 |
+
"test2_ds = TextDataset(test2_df, test2_text_col, vocab, max_len)\n",
|
381 |
+
"test3_ds = TextDataset(test3_df, test3_text_col, vocab, max_len)\n",
|
382 |
+
"\n",
|
383 |
+
"train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)\n",
|
384 |
+
"valid_dl = DataLoader(valid_ds, batch_size=batch_size)\n",
|
385 |
+
"test1_dl = DataLoader(test1_ds, batch_size=batch_size)\n",
|
386 |
+
"test2_dl = DataLoader(test2_ds, batch_size=batch_size)\n",
|
387 |
+
"test3_dl = DataLoader(test3_ds, batch_size=batch_size)\n",
|
388 |
+
"\n",
|
389 |
+
"# --- MODELI ---\n",
|
390 |
+
"class LSTMClassifier(nn.Module):\n",
|
391 |
+
" def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
|
392 |
+
" super().__init__()\n",
|
393 |
+
" num_embeddings, embedding_dim = embedding_matrix.shape\n",
|
394 |
+
" self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
|
395 |
+
" self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
|
396 |
+
" self.embedding.weight.requires_grad = False\n",
|
397 |
+
" self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
|
398 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
399 |
+
" self.fc = nn.Linear(hidden_dim, num_classes)\n",
|
400 |
+
" def forward(self, x):\n",
|
401 |
+
" x = self.embedding(x)\n",
|
402 |
+
" _, (hidden, _) = self.lstm(x)\n",
|
403 |
+
" out = self.dropout(hidden[-1])\n",
|
404 |
+
" return self.fc(out)\n",
|
405 |
+
"\n",
|
406 |
+
"class GRUClassifier(nn.Module):\n",
|
407 |
+
" def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
|
408 |
+
" super().__init__()\n",
|
409 |
+
" num_embeddings, embedding_dim = embedding_matrix.shape\n",
|
410 |
+
" self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
|
411 |
+
" self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
|
412 |
+
" self.embedding.weight.requires_grad = False\n",
|
413 |
+
" self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True)\n",
|
414 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
415 |
+
" self.fc = nn.Linear(hidden_dim, num_classes)\n",
|
416 |
+
" def forward(self, x):\n",
|
417 |
+
" x = self.embedding(x)\n",
|
418 |
+
" _, hidden = self.gru(x)\n",
|
419 |
+
" out = self.dropout(hidden[-1])\n",
|
420 |
+
" return self.fc(out)\n",
|
421 |
+
"\n",
|
422 |
+
"class CNNClassifier(nn.Module):\n",
|
423 |
+
" def __init__(self, embedding_matrix, num_filters=128, kernel_sizes=[3,4,5], num_classes=3, dropout=0.8):\n",
|
424 |
+
" super().__init__()\n",
|
425 |
+
" num_embeddings, embedding_dim = embedding_matrix.shape\n",
|
426 |
+
" self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
|
427 |
+
" self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
|
428 |
+
" self.embedding.weight.requires_grad = False\n",
|
429 |
+
" self.convs = nn.ModuleList([\n",
|
430 |
+
" nn.Conv2d(1, num_filters, (k, embedding_dim)) for k in kernel_sizes\n",
|
431 |
+
" ])\n",
|
432 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
433 |
+
" self.fc = nn.Linear(num_filters * len(kernel_sizes), num_classes)\n",
|
434 |
+
" def forward(self, x):\n",
|
435 |
+
" x = self.embedding(x)\n",
|
436 |
+
" x = x.unsqueeze(1)\n",
|
437 |
+
" x = [torch.relu(conv(x)).squeeze(3) for conv in self.convs]\n",
|
438 |
+
" x = [torch.max(pool, dim=2)[0] for pool in x]\n",
|
439 |
+
" x = torch.cat(x, dim=1)\n",
|
440 |
+
" x = self.dropout(x)\n",
|
441 |
+
" return self.fc(x)\n",
|
442 |
+
"\n",
|
443 |
+
"# --- TRENING I VALIDACIJA ---\n",
|
444 |
+
"def train_epoch(model, dataloader, optimizer, criterion, device):\n",
|
445 |
+
" model.train()\n",
|
446 |
+
" total_loss = 0\n",
|
447 |
+
" for x, y in dataloader:\n",
|
448 |
+
" x, y = x.to(device), y.to(device)\n",
|
449 |
+
" optimizer.zero_grad()\n",
|
450 |
+
" logits = model(x)\n",
|
451 |
+
" loss = criterion(logits, y)\n",
|
452 |
+
" loss.backward()\n",
|
453 |
+
" optimizer.step()\n",
|
454 |
+
" total_loss += loss.item()\n",
|
455 |
+
" return total_loss / len(dataloader)\n",
|
456 |
+
"\n",
|
457 |
+
"def eval_model(model, dataloader, device, criterion=None, return_loss=False):\n",
|
458 |
+
" model.eval()\n",
|
459 |
+
" preds, targets = [], []\n",
|
460 |
+
" total_loss = 0\n",
|
461 |
+
" with torch.no_grad():\n",
|
462 |
+
" for x, y in dataloader:\n",
|
463 |
+
" x, y = x.to(device), y.to(device)\n",
|
464 |
+
" logits = model(x)\n",
|
465 |
+
" if criterion and return_loss:\n",
|
466 |
+
" loss = criterion(logits, y)\n",
|
467 |
+
" total_loss += loss.item()\n",
|
468 |
+
" pred = logits.argmax(1).cpu().numpy()\n",
|
469 |
+
" preds.extend(pred)\n",
|
470 |
+
" targets.extend(y.cpu().numpy())\n",
|
471 |
+
" if return_loss and criterion:\n",
|
472 |
+
" return np.array(preds), np.array(targets), total_loss / len(dataloader)\n",
|
473 |
+
" return np.array(preds), np.array(targets)\n",
|
474 |
+
"\n",
|
475 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
476 |
+
"\n",
|
477 |
+
"def run_training(model_class, name, epochs=50, dropout=0.8, lr=5e-4):\n",
|
478 |
+
" print(f\"\\n{name} training...\")\n",
|
479 |
+
" model = model_class(embedding_matrix, dropout=dropout).to(device)\n",
|
480 |
+
" optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n",
|
481 |
+
" criterion = nn.CrossEntropyLoss()\n",
|
482 |
+
" for epoch in range(epochs):\n",
|
483 |
+
" train_loss = train_epoch(model, train_dl, optimizer, criterion, device)\n",
|
484 |
+
" _, _, val_loss = eval_model(model, valid_dl, device, criterion, return_loss=True)\n",
|
485 |
+
" if (epoch+1) % 5 == 0 or epoch == 0:\n",
|
486 |
+
" print(f\"{name} Epoch {epoch+1}: Train loss {train_loss:.4f} | Validation loss {val_loss:.4f}\")\n",
|
487 |
+
" results = {}\n",
|
488 |
+
" for test_name, test_dl in zip(\n",
|
489 |
+
" ['test1', 'test2', 'test3'],\n",
|
490 |
+
" [test1_dl, test2_dl, test3_dl]\n",
|
491 |
+
" ):\n",
|
492 |
+
" preds, targets = eval_model(model, test_dl, device)\n",
|
493 |
+
" report = classification_report(targets, preds, digits=4, output_dict=True, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
|
494 |
+
" matrix = confusion_matrix(targets, preds)\n",
|
495 |
+
" print(f\"\\n{name} on {test_name} Classification report:\\n\", classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"]))\n",
|
496 |
+
" print(f\"{name} on {test_name} Confusion matrix:\\n\", matrix)\n",
|
497 |
+
" results[test_name] = {\n",
|
498 |
+
" 'precision': report['macro avg']['precision'],\n",
|
499 |
+
" 'recall': report['macro avg']['recall'],\n",
|
500 |
+
" 'f1': report['macro avg']['f1-score'],\n",
|
501 |
+
" 'accuracy': report['accuracy'],\n",
|
502 |
+
" 'confusion_matrix': matrix.tolist(),\n",
|
503 |
+
" 'full_report': classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
|
504 |
+
" }\n",
|
505 |
+
" return results\n",
|
506 |
+
"\n",
|
507 |
+
"# --- POKRETANJE ---\n",
|
508 |
+
"lstm_results = run_training(LSTMClassifier, \"LSTM\", epochs=50, dropout=0.8, lr=5e-4)\n",
|
509 |
+
"gru_results = run_training(GRUClassifier, \"GRU\", epochs=50, dropout=0.8, lr=5e-4)\n",
|
510 |
+
"cnn_results = run_training(CNNClassifier, \"CNN\", epochs=50, dropout=0.8, lr=5e-4)\n",
|
511 |
+
"\n",
|
512 |
+
"# --- SPREMANJE ---\n",
|
513 |
+
"with open('results.md', 'w', encoding='utf-8') as f:\n",
|
514 |
+
" for model_name, results in [('LSTM', lstm_results), ('GRU', gru_results), ('CNN', cnn_results)]:\n",
|
515 |
+
" f.write(f\"## {model_name}\\n\\n\")\n",
|
516 |
+
" for test_name, res in results.items():\n",
|
517 |
+
" f.write(f\"### {test_name}\\n\")\n",
|
518 |
+
" f.write(f\"- Precision: {res['precision']:.4f}\\n\")\n",
|
519 |
+
" f.write(f\"- Recall: {res['recall']:.4f}\\n\")\n",
|
520 |
+
" f.write(f\"- F1: {res['f1']:.4f}\\n\")\n",
|
521 |
+
" f.write(f\"- Accuracy: {res['accuracy']:.4f}\\n\")\n",
|
522 |
+
" f.write(f\"- Confusion matrix: {res['confusion_matrix']}\\n\\n\")\n",
|
523 |
+
" f.write(f\"Full classification report:\\n{res['full_report']}\\n\\n\")\n"
|
524 |
+
]
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"metadata": {
|
528 |
+
"kernelspec": {
|
529 |
+
"display_name": "Python 3",
|
530 |
+
"language": "python",
|
531 |
+
"name": "python3"
|
532 |
+
},
|
533 |
+
"language_info": {
|
534 |
+
"codemirror_mode": {
|
535 |
+
"name": "ipython",
|
536 |
+
"version": 3
|
537 |
+
},
|
538 |
+
"file_extension": ".py",
|
539 |
+
"mimetype": "text/x-python",
|
540 |
+
"name": "python",
|
541 |
+
"nbconvert_exporter": "python",
|
542 |
+
"pygments_lexer": "ipython3",
|
543 |
+
"version": "3.9.6"
|
544 |
+
}
|
545 |
+
},
|
546 |
+
"nbformat": 4,
|
547 |
+
"nbformat_minor": 5
|
548 |
+
}
|
results(test1,2,3).md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## LSTM
|
2 |
+
|
3 |
+
### test1
|
4 |
+
- Precision: 0.2195
|
5 |
+
- Recall: 0.3333
|
6 |
+
- F1: 0.2647
|
7 |
+
- Accuracy: 0.6585
|
8 |
+
- Confusion matrix: [[0, 165, 0], [0, 430, 0], [0, 58, 0]]
|
9 |
+
|
10 |
+
Full classification report:
|
11 |
+
precision recall f1-score support
|
12 |
+
|
13 |
+
positive 0.0000 0.0000 0.0000 165
|
14 |
+
neutral 0.6585 1.0000 0.7941 430
|
15 |
+
negative 0.0000 0.0000 0.0000 58
|
16 |
+
|
17 |
+
accuracy 0.6585 653
|
18 |
+
macro avg 0.2195 0.3333 0.2647 653
|
19 |
+
weighted avg 0.4336 0.6585 0.5229 653
|
20 |
+
|
21 |
+
|
22 |
+
### test2
|
23 |
+
- Precision: 0.1939
|
24 |
+
- Recall: 0.3333
|
25 |
+
- F1: 0.2452
|
26 |
+
- Accuracy: 0.5816
|
27 |
+
- Confusion matrix: [[0, 216, 0], [0, 431, 0], [0, 94, 0]]
|
28 |
+
|
29 |
+
Full classification report:
|
30 |
+
precision recall f1-score support
|
31 |
+
|
32 |
+
positive 0.0000 0.0000 0.0000 216
|
33 |
+
neutral 0.5816 1.0000 0.7355 431
|
34 |
+
negative 0.0000 0.0000 0.0000 94
|
35 |
+
|
36 |
+
accuracy 0.5816 741
|
37 |
+
macro avg 0.1939 0.3333 0.2452 741
|
38 |
+
weighted avg 0.3383 0.5816 0.4278 741
|
39 |
+
|
40 |
+
|
41 |
+
### test3
|
42 |
+
- Precision: 0.1106
|
43 |
+
- Recall: 0.3333
|
44 |
+
- F1: 0.1660
|
45 |
+
- Accuracy: 0.3317
|
46 |
+
- Confusion matrix: [[0, 267, 0], [0, 263, 0], [0, 263, 0]]
|
47 |
+
|
48 |
+
Full classification report:
|
49 |
+
precision recall f1-score support
|
50 |
+
|
51 |
+
positive 0.0000 0.0000 0.0000 267
|
52 |
+
neutral 0.3317 1.0000 0.4981 263
|
53 |
+
negative 0.0000 0.0000 0.0000 263
|
54 |
+
|
55 |
+
accuracy 0.3317 793
|
56 |
+
macro avg 0.1106 0.3333 0.1660 793
|
57 |
+
weighted avg 0.1100 0.3317 0.1652 793
|
58 |
+
|
59 |
+
|
60 |
+
## GRU
|
61 |
+
|
62 |
+
### test1
|
63 |
+
- Precision: 0.4470
|
64 |
+
- Recall: 0.4538
|
65 |
+
- F1: 0.4485
|
66 |
+
- Accuracy: 0.6064
|
67 |
+
- Confusion matrix: [[86, 69, 10], [97, 302, 31], [16, 34, 8]]
|
68 |
+
|
69 |
+
Full classification report:
|
70 |
+
precision recall f1-score support
|
71 |
+
|
72 |
+
positive 0.4322 0.5212 0.4725 165
|
73 |
+
neutral 0.7457 0.7023 0.7234 430
|
74 |
+
negative 0.1633 0.1379 0.1495 58
|
75 |
+
|
76 |
+
accuracy 0.6064 653
|
77 |
+
macro avg 0.4470 0.4538 0.4485 653
|
78 |
+
weighted avg 0.6147 0.6064 0.6090 653
|
79 |
+
|
80 |
+
|
81 |
+
### test2
|
82 |
+
- Precision: 0.8557
|
83 |
+
- Recall: 0.8500
|
84 |
+
- F1: 0.8527
|
85 |
+
- Accuracy: 0.8880
|
86 |
+
- Confusion matrix: [[191, 19, 6], [20, 397, 14], [9, 15, 70]]
|
87 |
+
|
88 |
+
Full classification report:
|
89 |
+
precision recall f1-score support
|
90 |
+
|
91 |
+
positive 0.8682 0.8843 0.8761 216
|
92 |
+
neutral 0.9211 0.9211 0.9211 431
|
93 |
+
negative 0.7778 0.7447 0.7609 94
|
94 |
+
|
95 |
+
accuracy 0.8880 741
|
96 |
+
macro avg 0.8557 0.8500 0.8527 741
|
97 |
+
weighted avg 0.8875 0.8880 0.8877 741
|
98 |
+
|
99 |
+
|
100 |
+
### test3
|
101 |
+
- Precision: 0.6896
|
102 |
+
- Recall: 0.6454
|
103 |
+
- F1: 0.6251
|
104 |
+
- Accuracy: 0.6456
|
105 |
+
- Confusion matrix: [[187, 58, 22], [21, 237, 5], [41, 134, 88]]
|
106 |
+
|
107 |
+
Full classification report:
|
108 |
+
precision recall f1-score support
|
109 |
+
|
110 |
+
positive 0.7510 0.7004 0.7248 267
|
111 |
+
neutral 0.5524 0.9011 0.6850 263
|
112 |
+
negative 0.7652 0.3346 0.4656 263
|
113 |
+
|
114 |
+
accuracy 0.6456 793
|
115 |
+
macro avg 0.6896 0.6454 0.6251 793
|
116 |
+
weighted avg 0.6899 0.6456 0.6256 793
|
117 |
+
|
118 |
+
|
119 |
+
## CNN
|
120 |
+
|
121 |
+
### test1
|
122 |
+
- Precision: 0.6103
|
123 |
+
- Recall: 0.4595
|
124 |
+
- F1: 0.4816
|
125 |
+
- Accuracy: 0.6692
|
126 |
+
- Confusion matrix: [[61, 103, 1], [59, 367, 4], [11, 38, 9]]
|
127 |
+
|
128 |
+
Full classification report:
|
129 |
+
precision recall f1-score support
|
130 |
+
|
131 |
+
positive 0.4656 0.3697 0.4122 165
|
132 |
+
neutral 0.7224 0.8535 0.7825 430
|
133 |
+
negative 0.6429 0.1552 0.2500 58
|
134 |
+
|
135 |
+
accuracy 0.6692 653
|
136 |
+
macro avg 0.6103 0.4595 0.4816 653
|
137 |
+
weighted avg 0.6505 0.6692 0.6416 653
|
138 |
+
|
139 |
+
|
140 |
+
### test2
|
141 |
+
- Precision: 0.9077
|
142 |
+
- Recall: 0.8366
|
143 |
+
- F1: 0.8659
|
144 |
+
- Accuracy: 0.8988
|
145 |
+
- Confusion matrix: [[180, 33, 3], [9, 420, 2], [11, 17, 66]]
|
146 |
+
|
147 |
+
Full classification report:
|
148 |
+
precision recall f1-score support
|
149 |
+
|
150 |
+
positive 0.9000 0.8333 0.8654 216
|
151 |
+
neutral 0.8936 0.9745 0.9323 431
|
152 |
+
negative 0.9296 0.7021 0.8000 94
|
153 |
+
|
154 |
+
accuracy 0.8988 741
|
155 |
+
macro avg 0.9077 0.8366 0.8659 741
|
156 |
+
weighted avg 0.9000 0.8988 0.8960 741
|
157 |
+
|
158 |
+
|
159 |
+
### test3
|
160 |
+
- Precision: 0.7336
|
161 |
+
- Recall: 0.5839
|
162 |
+
- F1: 0.5465
|
163 |
+
- Accuracy: 0.5839
|
164 |
+
- Confusion matrix: [[152, 109, 6], [5, 258, 0], [25, 185, 53]]
|
165 |
+
|
166 |
+
Full classification report:
|
167 |
+
precision recall f1-score support
|
168 |
+
|
169 |
+
positive 0.8352 0.5693 0.6771 267
|
170 |
+
neutral 0.4674 0.9810 0.6331 263
|
171 |
+
negative 0.8983 0.2015 0.3292 263
|
172 |
+
|
173 |
+
accuracy 0.5839 793
|
174 |
+
macro avg 0.7336 0.5839 0.5465 793
|
175 |
+
weighted avg 0.7341 0.5839 0.5471 793
|
176 |
+
|
177 |
+
|