File size: 5,652 Bytes
5a7414a cc98be9 1279d9c cc98be9 5a7414a cc98be9 5a7414a cc98be9 67cf515 cc98be9 c36a5dd cc98be9 67cf515 cc98be9 5a7414a cc98be9 5f54919 12e5737 5f54919 cc98be9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: NYUAD-ComNets/Middle_Eastern_Female_Profession
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# Model description
This model is a part of project targeting Debiasing of generative stable diffusion models.
LoRA text2image fine-tuning - NYUAD-ComNets/Middle_Eastern_Female_Profession_Model
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Middle_Eastern_Female_Profession dataset.
You can find some example images.
prompt: a photo of a {profession}, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus
# How to use this model:
``` python
import torch
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import random
negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality"
models=["NYUAD-ComNets/Asian_Female_Profession_Model","NYUAD-ComNets/Black_Female_Profession_Model","NYUAD-ComNets/White_Female_Profession_Model",
"NYUAD-ComNets/Indian_Female_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Female_Profession_Model","NYUAD-ComNets/Middle_Eastern_Female_Profession_Model",
"NYUAD-ComNets/Asian_Male_Profession_Model","NYUAD-ComNets/Black_Male_Profession_Model","NYUAD-ComNets/White_Male_Profession_Model",
"NYUAD-ComNets/Indian_Male_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Male_Profession_Model","NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"]
adapters=["asian_female","black_female","white_female","indian_female","latino_female","middle_east_female",
"asian_male","black_male","white_male","indian_male","latino_male","middle_east_male"]
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda")
for i,j in zip(models,adapters):
pipeline.load_lora_weights(i, weight_name="pytorch_lora_weights.safetensors",adapter_name=j)
pipeline.set_adapters(random.choice(adapters))
compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],truncate_long_prompts=False)
conditioning, pooled = compel("a photo of a doctor, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus")
negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning,
pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled,
num_inference_steps=40).images[0]
image.save('/../../x.jpg')
```
# Examples
| | | |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./image_0.png"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./12507.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./16137.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./17350.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./2986.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./4162.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./42.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./541.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./549.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./57.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./6596.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./8950.jpg">|
# Training data
NYUAD-ComNets/Middle_Eastern_Female_Profession dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0
profession list =['pilot','doctor','nurse','pharmacist','dietitian','professor','teacher','mathematics scientist','computer engineer','programmer','tailor','cleaner',
'soldier','security guard','lawyer','manager','accountant','secretary','singer','journalist','youtuber','tiktoker','fashion model','chef','sushi chef']
# Configurations
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
# BibTeX entry and citation info
```
@article{aldahoul2025ai,
title={AI-generated faces influence gender stereotypes and racial homogenization},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={Scientific reports},
volume={15},
number={1},
pages={14449},
year={2025},
publisher={Nature Publishing Group UK London}
}
@article{aldahoul2024ai,
title={AI-generated faces free from racial and gender stereotypes},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={arXiv preprint arXiv:2402.01002},
year={2024}
}
@misc{ComNets,
url={[https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Female_Profession_Model](https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Female_Profession_Model)},
title={Middle_Eastern_Female_Profession_Model},
author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki}
}
```
|