File size: 5,652 Bytes
5a7414a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc98be9
1279d9c
 
 
cc98be9
5a7414a
cc98be9
 
5a7414a
cc98be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67cf515
cc98be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36a5dd
 
 
 
cc98be9
 
 
 
 
 
 
67cf515
 
cc98be9
 
 
5a7414a
 
 
 
cc98be9
 
 
 
 
 
5f54919
12e5737
 
 
 
 
 
 
 
 
 
 
 
5f54919
 
 
 
 
 
 
cc98be9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: NYUAD-ComNets/Middle_Eastern_Female_Profession
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
    

# Model description

This model is a part of project targeting Debiasing of generative stable diffusion models.

LoRA text2image fine-tuning - NYUAD-ComNets/Middle_Eastern_Female_Profession_Model

These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Middle_Eastern_Female_Profession dataset. 
You can find some example images.

prompt: a photo of a {profession}, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus

# How to use this model:

``` python


import torch
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline

import random


negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality" 


models=["NYUAD-ComNets/Asian_Female_Profession_Model","NYUAD-ComNets/Black_Female_Profession_Model","NYUAD-ComNets/White_Female_Profession_Model",
"NYUAD-ComNets/Indian_Female_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Female_Profession_Model","NYUAD-ComNets/Middle_Eastern_Female_Profession_Model",
"NYUAD-ComNets/Asian_Male_Profession_Model","NYUAD-ComNets/Black_Male_Profession_Model","NYUAD-ComNets/White_Male_Profession_Model",
"NYUAD-ComNets/Indian_Male_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Male_Profession_Model","NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"]

adapters=["asian_female","black_female","white_female","indian_female","latino_female","middle_east_female",
"asian_male","black_male","white_male","indian_male","latino_male","middle_east_male"]

pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda")


for i,j in zip(models,adapters):
    pipeline.load_lora_weights(i, weight_name="pytorch_lora_weights.safetensors",adapter_name=j) 


pipeline.set_adapters(random.choice(adapters))


compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
                    text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
                    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, 
                    requires_pooled=[False, True],truncate_long_prompts=False)

    
conditioning, pooled = compel("a photo of a doctor, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus") 

negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])

image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning,
                     pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled,
                     num_inference_steps=40).images[0]

image.save('/../../x.jpg')

```


# Examples

| | | |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./image_0.png"> |  <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./12507.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./16137.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./17350.jpg"> |  <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./2986.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./4162.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./42.jpg"> |  <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./541.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./549.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./57.jpg"> |  <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./6596.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./8950.jpg">|



# Training data

NYUAD-ComNets/Middle_Eastern_Female_Profession dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0

profession list =['pilot','doctor','nurse','pharmacist','dietitian','professor','teacher','mathematics scientist','computer engineer','programmer','tailor','cleaner',
'soldier','security guard','lawyer','manager','accountant','secretary','singer','journalist','youtuber','tiktoker','fashion model','chef','sushi chef']


# Configurations

LoRA for the text encoder was enabled: False.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.



# BibTeX entry and citation info

```

@article{aldahoul2025ai,
  title={AI-generated faces influence gender stereotypes and racial homogenization},
  author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
  journal={Scientific reports},
  volume={15},
  number={1},
  pages={14449},
  year={2025},
  publisher={Nature Publishing Group UK London}
}


@article{aldahoul2024ai,
  title={AI-generated faces free from racial and gender stereotypes},
  author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
  journal={arXiv preprint arXiv:2402.01002},
  year={2024}
}

@misc{ComNets,
      url={[https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Female_Profession_Model](https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Female_Profession_Model)},
      title={Middle_Eastern_Female_Profession_Model},
      author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki}
}
```