File size: 6,252 Bytes
1bb0b13 e0c0421 4d09c05 e0c0421 1bb0b13 e0c0421 1bb0b13 e0c0421 389d3c1 e0c0421 ab7d315 e0c0421 14e598a e0c0421 ab7d315 e0c0421 1bb0b13 e0c0421 fe150e8 9d1baf0 fe150e8 e0c0421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: NYUAD-ComNets/Middle_Eastern_Male_Profession
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# Model description
This model is a part of project targeting Debiasing of generative stable diffusion models.
LoRA text2image fine-tuning - NYUAD-ComNets/Middle_Eastern_Male_Profession_Model
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Middle_Eastern_Male_Profession dataset.
You can find some example images.
prompt: a photo of a {profession}, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus
# How to use this model:
``` API
import requests
API_URL = "https://api-inference.huggingface.co/models/NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"
headers = {"Authorization": "Bearer {hugging_face token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
image_bytes = query({
"inputs": "a headshot of a person with green hair and eyeglasses",
"parameters": {"negative_prompt": "cartoon",
"seed":766},
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))
image
```
``` python
import torch
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import random
negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality"
models=["NYUAD-ComNets/Asian_Female_Profession_Model","NYUAD-ComNets/Black_Female_Profession_Model","NYUAD-ComNets/White_Female_Profession_Model",
"NYUAD-ComNets/Indian_Female_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Female_Profession_Model","NYUAD-ComNets/Middle_Eastern_Female_Profession_Model",
"NYUAD-ComNets/Asian_Male_Profession_Model","NYUAD-ComNets/Black_Male_Profession_Model","NYUAD-ComNets/White_Male_Profession_Model",
"NYUAD-ComNets/Indian_Male_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Male_Profession_Model","NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"]
adapters=["asian_female","black_female","white_female","indian_female","latino_female","middle_east_female",
"asian_male","black_male","white_male","indian_male","latino_male","middle_east_male"]
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda")
for i,j in zip(models,adapters):
pipeline.load_lora_weights(i, weight_name="pytorch_lora_weights.safetensors",adapter_name=j)
pipeline.set_adapters(random.choice(adapters))
compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],truncate_long_prompts=False)
conditioning, pooled = compel("a photo of a doctor, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus")
negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning,
pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled,
num_inference_steps=40).images[0]
image.save('/../../x.jpg')
```
# Examples
| | | |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./1064.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./1610.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./292.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./1191.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./1699.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./581.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./1399.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./2073.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./50.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./1519.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./234.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./971.jpg">|
# Training data
NYUAD-ComNets/Middle_Eastern_Male_Profession dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0
profession list =['pilot','doctor','nurse','pharmacist','dietitian','professor','teacher','mathematics scientist','computer engineer','programmer','tailor','cleaner',
'soldier','security guard','lawyer','manager','accountant','secretary','singer','journalist','youtuber','tiktoker','fashion model','chef','sushi chef']
# Configurations
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
# BibTeX entry and citation info
```
@article{aldahoul2025ai,
title={AI-generated faces influence gender stereotypes and racial homogenization},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={Scientific reports},
volume={15},
number={1},
pages={14449},
year={2025},
publisher={Nature Publishing Group UK London}
}
@article{aldahoul2024ai,
title={AI-generated faces free from racial and gender stereotypes},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={arXiv preprint arXiv:2402.01002},
year={2024}
}
@misc{ComNets,
url={[https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Male_Profession_Model](https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Male_Profession_Model)},
title={Middle_Eastern_Male_Profession_Model},
author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki}
}
```
|