File size: 2,119 Bytes
7487e3f 75b8e84 7487e3f fb41839 7487e3f fb41839 7487e3f 277ef31 3d5a039 277ef31 83955f1 277ef31 3d5a039 7487e3f 07d0d19 b0a2e66 a8b5a08 07d0d19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
inference: false
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: AI-generated_images_detector
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9735697557711609
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AI-generated_images_detector
This model achieves the following results on the evaluation set:
- Loss: 0.0987
- Accuracy: 0.9736
# To utilize this model
``` python
from PIL import Image
from transformers import pipeline
classifier = pipeline("image-classification", model="NYUAD-ComNets/NYUAD_AI-generated_images_detector")
image=Image.open("path_to_image")
pred=classifier(image)
print(pred)
```
## Training and evaluation data
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0431 | 0.55 | 100 | 0.1672 | 0.9568 |
| 0.0139 | 1.1 | 200 | 0.2338 | 0.9398 |
| 0.0201 | 1.66 | 300 | 0.1291 | 0.9655 |
| 0.0023 | 2.21 | 400 | 0.1147 | 0.9709 |
| 0.0033 | 2.76 | 500 | 0.0987 | 0.9736 |
# BibTeX entry and citation info
```
@article{aldahoul2024detecting,
title={Detecting AI-Generated Images Using Vision Transformers: A Robust Approach for Safeguarding Visual Media Integrity},
author={AlDahoul, Nouar and Zaki, Yasir},
journal={Available at SSRN},
year={2024}
}
@misc{ComNets,
url={https://huggingface.co/NYUAD-ComNets/NYUAD_AI-generated_images_detector](https://huggingface.co/NYUAD-ComNets/NYUAD_AI-generated_images_detector)},
title={NYUAD_AI-generated_images_detector},
author={Nouar AlDahoul, Yasir Zaki}
}
|