--- library_name: transformers license: apache-2.0 base_model: Geotrend/bert-base-th-cased tags: - generated_from_trainer datasets: - lst20 metrics: - precision - recall - f1 - accuracy model-index: - name: test-ner results: - task: name: Token Classification type: token-classification dataset: name: lst20 type: lst20 config: lst20 split: validation args: lst20 metrics: - name: Precision type: precision value: 0.8146895294348094 - name: Recall type: recall value: 0.8409048492954679 - name: F1 type: f1 value: 0.8275896376229288 - name: Accuracy type: accuracy value: 0.9378905377283859 --- # test-ner This model is a fine-tuned version of [Geotrend/bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased) on the lst20 dataset. It achieves the following results on the evaluation set: - Loss: 0.1910 - Precision: 0.8147 - Recall: 0.8409 - F1: 0.8276 - Accuracy: 0.9379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1623 | 1.0 | 3957 | 0.1910 | 0.8147 | 0.8409 | 0.8276 | 0.9379 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1