NikkeS commited on
Commit
84b8c0b
·
verified ·
1 Parent(s): 68fa537

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -3
README.md CHANGED
@@ -1,3 +1,53 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - summarization
6
+ - fine-tuned
7
+ - dialogue
8
+ - transformers
9
+ - phi-2
10
+ model_name: phi-2-dialogue-summarization
11
+ datasets:
12
+ - neil-code/dialogsum-test
13
+ library_name: transformers
14
+ metrics:
15
+ - rouge
16
+ base_model:
17
+ - microsoft/phi-2
18
+ ---
19
+
20
+ # Phi-2 Dialogue Summarization Model
21
+
22
+ ## Model Description
23
+ This is a fine-tuned version of **Phi-2**, optimized for **dialogue summarization**. The model is trained on a dataset containing human conversations and their respective summaries, allowing it to generate concise and coherent summaries of dialogue-based texts.
24
+
25
+ ## Intended Use
26
+ - Summarizing conversations from various sources, including transcripts and chat logs.
27
+ - Extracting key points from spoken or written dialogue.
28
+ - Assisting in text compression for NLP applications.
29
+
30
+ ## Training Details
31
+ - **Base Model**: `microsoft/phi-2`
32
+ - **Fine-tuning Method**: PEFT (Parameter Efficient Fine-Tuning)
33
+ - **Dataset**: neil-code/dialogsum-test
34
+ - **Evaluation Metrics**: ROUGE scores for summary quality assessment. rouge1: 2.01%, rouge2: -0.29%, rougeL: 1.32%, rougeLsum: 2.53%.
35
+
36
+ ## Limitations & Biases
37
+ - The model may struggle with highly technical or domain-specific dialogues.
38
+ - Potential biases present in the training data could affect summary quality.
39
+ - Summarization may sometimes miss nuances in highly informal conversations.
40
+
41
+ ## How to Use
42
+ ```python
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+
45
+ model_name = "your-username/phi-2-dialogue-summarization"
46
+ tokenizer = AutoTokenizer.from_pretrained(NikkeS/Phi-2-dialogsum-finetuned)
47
+ model = AutoModelForCausalLM.from_pretrained(NikkeS/Phi-2-dialogsum-finetuned)
48
+
49
+ prompt = "Summarize the following conversation:\n\n#Person1#: Hello! How are you?\n#Person2#: I'm good, thanks. How about you?\n\nSummary:"
50
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
51
+ output = model.generate(input_ids, max_length=100)
52
+
53
+ print(tokenizer.decode(output[0], skip_special_tokens=True))