--- library_name: transformers base_model: NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: qwen-2-7b-dpo-ultrafeedback-5e-7-SFTed-paged_adamw_32bit-fixed-1.0 results: [] --- # qwen-2-7b-dpo-ultrafeedback-5e-7-SFTed-paged_adamw_32bit-fixed-1.0 This is a model released from the preprint: [DPO-Shift: Shifting the Distribution of Direct Preference Optimization](https://arxiv.org/abs/2502.07599). Please refer to our [repository](https://github.com/Meaquadddd/DPO-Shift) for more details. This model is a fine-tuned version of [NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT](https://huggingface.co/NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5603 - Rewards/chosen: -0.6046 - Rewards/rejected: -1.1004 - Dpo Lambda: 1.0 - Rewards/accuracies: 0.7381 - Rewards/margins: 0.4957 - Logps/rejected: -416.7722 - Logps/chosen: -393.7754 - Logits/rejected: -1.0300 - Logits/chosen: -0.9521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Dpo Lambda | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:----------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6874 | 0.1047 | 50 | 0.6866 | 0.0419 | 0.0289 | 1.0 | 0.6706 | 0.0129 | -303.8425 | -329.1250 | -1.2956 | -1.1731 | | 0.6513 | 0.2093 | 100 | 0.6640 | 0.0547 | -0.0154 | 1.0 | 0.7302 | 0.0702 | -308.2813 | -327.8370 | -1.2875 | -1.1603 | | 0.6568 | 0.3140 | 150 | 0.6347 | -0.0883 | -0.2516 | 1.0 | 0.7222 | 0.1634 | -331.9008 | -342.1388 | -1.2942 | -1.1718 | | 0.6272 | 0.4186 | 200 | 0.6070 | -0.2437 | -0.5057 | 1.0 | 0.7143 | 0.2620 | -357.3109 | -357.6843 | -1.2251 | -1.1152 | | 0.5866 | 0.5233 | 250 | 0.5879 | -0.3786 | -0.7293 | 1.0 | 0.7302 | 0.3506 | -379.6648 | -371.1762 | -1.1431 | -1.0513 | | 0.5892 | 0.6279 | 300 | 0.5753 | -0.4577 | -0.8757 | 1.0 | 0.7421 | 0.4180 | -394.3050 | -379.0780 | -1.0982 | -1.0094 | | 0.5996 | 0.7326 | 350 | 0.5656 | -0.5648 | -1.0341 | 1.0 | 0.7460 | 0.4693 | -410.1455 | -389.7921 | -1.0571 | -0.9754 | | 0.5734 | 0.8373 | 400 | 0.5625 | -0.5734 | -1.0606 | 1.0 | 0.7381 | 0.4872 | -412.8011 | -390.6537 | -1.0352 | -0.9564 | | 0.5382 | 0.9419 | 450 | 0.5603 | -0.6046 | -1.1004 | 1.0 | 0.7381 | 0.4957 | -416.7722 | -393.7754 | -1.0300 | -0.9521 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1