Update README.md
Browse files
README.md
CHANGED
|
@@ -6,3 +6,83 @@ language:
|
|
| 6 |
- 'no'
|
| 7 |
pipeline_tag: summarization
|
| 8 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
- 'no'
|
| 7 |
pipeline_tag: summarization
|
| 8 |
---
|
| 9 |
+
|
| 10 |
+
# Model Card
|
| 11 |
+
|
| 12 |
+
NbAiLab-6B-summarization-peft is trained on top of [NbAiLab/nb-gpt-j-6B](https://huggingface.co/NbAiLab/nb-gpt-j-6B) model on [NO-CNN-DailyMail](https://huggingface.co/datasets/NorGLM/NO-CNN-DailyMail) dataset.
|
| 13 |
+
|
| 14 |
+
Prompt format:
|
| 15 |
+
```
|
| 16 |
+
Summarise the article:\\n{article} |||\\n{positive_sample}
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
Inference prompt:
|
| 20 |
+
```
|
| 21 |
+
Summarise the article:\\n{article} |||\\n
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
## Run the Model
|
| 25 |
+
```python
|
| 26 |
+
from peft import PeftModel, PeftConfig
|
| 27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 28 |
+
import torch
|
| 29 |
+
|
| 30 |
+
source_model_id = "NbAiLab/nb-gpt-j-6B"
|
| 31 |
+
peft_model_id = "NorGLM/NbAiLab-6B-summarization-peft"
|
| 32 |
+
|
| 33 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
| 34 |
+
model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced')
|
| 35 |
+
|
| 36 |
+
tokenizer_max_len = 2048
|
| 37 |
+
tokenizer_config = {'pretrained_model_name_or_path': source_model_id,
|
| 38 |
+
'max_len': tokenizer_max_len}
|
| 39 |
+
tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config)
|
| 40 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 41 |
+
|
| 42 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
## Inference on test set
|
| 46 |
+
Load the model to evaluate on the test set of NO-CNN-DailyMail dataset:
|
| 47 |
+
```python
|
| 48 |
+
def generate_texts(model, tokenizer, prompts, max_seq_length=200, do_sample=True, top_p=0.95, top_k=10):
|
| 49 |
+
# prompts are a list of news articles
|
| 50 |
+
results = []
|
| 51 |
+
cnt = 0
|
| 52 |
+
for prompt in prompts:
|
| 53 |
+
cnt += 1
|
| 54 |
+
pro_len = len(prompt.split())
|
| 55 |
+
if pro_len>1024:
|
| 56 |
+
results.append('')
|
| 57 |
+
continue
|
| 58 |
+
|
| 59 |
+
prompt = 'Summarise the article:\\n' + prompt + ' |||\\n'
|
| 60 |
+
|
| 61 |
+
model_inputs = tokenizer(prompt, return_tensors='pt').to(torch_device)
|
| 62 |
+
output = model.generate(**model_inputs, do_sample=False, max_new_tokens=max_seq_length)
|
| 63 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 64 |
+
result = result.split("|||\\n")[-1]
|
| 65 |
+
results.append(result)
|
| 66 |
+
return results
|
| 67 |
+
|
| 68 |
+
print("--LOADING EVAL DATAS---")
|
| 69 |
+
eval_data = load_dataset("NorGLM/NO-CNN-DailyMail", data_files="test.csv")
|
| 70 |
+
prompts = eval_data['train']['article']
|
| 71 |
+
positive_samples = eval_data['train']['positive_sample']
|
| 72 |
+
|
| 73 |
+
print("--MAKING PREDICTIONS---")
|
| 74 |
+
model.eval()
|
| 75 |
+
|
| 76 |
+
output_file = <output file name>
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
results = generate_texts(model, tokenizer, prompts)
|
| 79 |
+
|
| 80 |
+
df = pd.DataFrame({'article':prompts, 'generated_text':results, 'positive_sample':positive_samples})
|
| 81 |
+
|
| 82 |
+
print("Save results to csv file...")
|
| 83 |
+
df.to_csv(output_file)
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## Note
|
| 88 |
+
More training details will be released soon!
|