File size: 1,333 Bytes
05e03f7
 
c4e2d98
 
 
 
 
 
be9ea70
 
05e03f7
 
c4e2d98
05e03f7
be9ea70
c4e2d98
05e03f7
c4e2d98
05e03f7
c4e2d98
05e03f7
ce80cc8
 
 
c4e2d98
05e03f7
c4e2d98
05e03f7
c4e2d98
 
 
 
 
 
 
 
 
 
 
 
 
 
05e03f7
c4e2d98
05e03f7
 
 
c4e2d98
05e03f7
c4e2d98
 
 
be9ea70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
library_name: transformers
license: other
language:
- or
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
datasets:
- sam2ai/reasoning-multilingual-R1-indic-odia-train
---

## Model description

This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the open_thoughts_indic dataset. The fine-tuning data [here](https://huggingface.co/datasets/sam2ai/reasoning-multilingual-R1-indic-odia-train),
It has been fine-tuned to do reasoning in Odia language.

## Intended uses & limitations

Reasoning in Odia language.

## Inference Script
Colab - https://colab.research.google.com/#fileId=https%3A//huggingface.co/OdiaGenAI/llama_3.1_8b_r_1.ipynb

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results



### Framework versions

- Transformers 4.45.0
- Pytorch 2.6.0.dev20241113+rocm6.2
- Datasets 3.1.0
- Tokenizers 0.20.3