File size: 5,700 Bytes
061e977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b219af9
061e977
b219af9
061e977
b219af9
061e977
b219af9
061e977
b219af9
061e977
b219af9
061e977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b219af9
 
 
 
 
 
061e977
 
 
 
 
 
b219af9
 
061e977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language: en
library_name: sentence-transformers
license: mit
pipeline_tag: sentence-similarity
tags:
- cross-encoder
- regression
- trail-rag
- pathfinder-rag
- msmarco
- passage-ranking
- sentence-transformers
model-index:
- name: trailrag-cross-encoder-msmarco-enhanced
  results:
  - task:
      type: text-ranking
    dataset:
      name: MS MARCO
      type: msmarco
    metrics:
    - type: mse
      value: 0.0423588519082496
    - type: mae
      value: 0.1121706619454281
    - type: rmse
      value: 0.2058126621669562
    - type: r2_score
      value: 0.7490766636371498
    - type: pearson_correlation
      value: 0.9093360796297332
    - type: spearman_correlation
      value: 0.8886928996060736
---

# TrailRAG Cross-Encoder: MS MARCO Enhanced

This is a fine-tuned cross-encoder model specifically optimized for **Passage Ranking** tasks, trained as part of the PathfinderRAG research project.

## Model Details

- **Model Type**: Cross-Encoder for Regression (continuous similarity scores)
- **Base Model**: `cross-encoder/ms-marco-MiniLM-L-6-v2`
- **Training Dataset**: MS MARCO (Large-scale passage ranking dataset from Microsoft)
- **Task**: Passage Ranking
- **Library**: sentence-transformers
- **License**: MIT

## Performance Metrics

### Final Regression Metrics

| Metric | Value | Description |
|--------|-------|-------------|
| **MSE** | **0.042359** | Mean Squared Error (lower is better) |
| **MAE** | **0.112171** | Mean Absolute Error (lower is better) |
| **RMSE** | **0.205813** | Root Mean Squared Error (lower is better) |
| **R² Score** | **0.749077** | Coefficient of determination (higher is better) |
| **Pearson Correlation** | **0.909336** | Linear correlation (higher is better) |
| **Spearman Correlation** | **0.888693** | Rank correlation (higher is better) |

### Training Details

- **Training Duration**: 21 minutes
- **Epochs**: 6
- **Early Stopping**: No
- **Best Correlation Score**: 0.944649
- **Final MSE**: 0.042359

### Training Configuration

- **Batch Size**: 20
- **Learning Rate**: 3e-05
- **Max Epochs**: 6
- **Weight Decay**: 0.01
- **Warmup Steps**: 100

## Usage

This model can be used with the sentence-transformers library for computing semantic similarity scores between query-document pairs.

### Installation

```bash
pip install sentence-transformers
```

### Basic Usage

```python
from sentence_transformers import CrossEncoder

# Load the model
model = CrossEncoder('OloriBern/trailrag-cross-encoder-msmarco-enhanced')

# Example usage
pairs = [
    ['What is artificial intelligence?', 'AI is a field of computer science focused on creating intelligent machines.'],
    ['What is artificial intelligence?', 'Paris is the capital of France.']
]

# Get similarity scores (continuous values, not binary)
scores = model.predict(pairs)
print(scores)  # Higher scores indicate better semantic match
```

### Advanced Usage in PathfinderRAG

```python
from sentence_transformers import CrossEncoder

# Initialize for PathfinderRAG exploration
cross_encoder = CrossEncoder('OloriBern/trailrag-cross-encoder-msmarco-enhanced')

def score_query_document_pair(query: str, document: str) -> float:
    """Score a query-document pair for relevance."""
    score = cross_encoder.predict([[query, document]])[0]
    return float(score)

# Use in document exploration
query = "Your research query"
documents = ["Document 1 text", "Document 2 text", ...]

# Score all pairs
scores = cross_encoder.predict([[query, doc] for doc in documents])
ranked_docs = sorted(zip(documents, scores), key=lambda x: x[1], reverse=True)
```

## Training Process

This model was trained using **regression metrics** (not classification) to predict continuous similarity scores in the range [0, 1]. The training process focused on:

1. **Data Quality**: Used authentic MS MARCO examples with careful contamination filtering
2. **Regression Approach**: Avoided binary classification, maintaining continuous label distribution
3. **Correlation Optimization**: Maximized Spearman correlation for effective ranking
4. **Scientific Rigor**: All metrics derived from real training runs without simulation

### Why Regression Over Classification?

Cross-encoders for information retrieval should predict **continuous similarity scores**, not binary classifications. This approach:

- Preserves fine-grained similarity distinctions
- Enables better ranking and document selection
- Provides more informative scores for downstream applications
- Aligns with the mathematical foundation of information retrieval

## Dataset

**MS MARCO**: Large-scale passage ranking dataset from Microsoft

- **Task Type**: Passage Ranking
- **Training Examples**: 1,000 high-quality pairs
- **Validation Split**: 20% (200 examples)
- **Quality Threshold**: ≥0.70 (authentic TrailRAG metrics)
- **Contamination**: Zero overlap between splits

## Limitations

- Optimized specifically for passage ranking tasks
- Performance may vary on out-of-domain data
- Requires sentence-transformers library for inference
- CPU-based training (GPU optimization available for future versions)

## Citation

```bibtex
@misc{trailrag-cross-encoder-msmarco,
  title = {TrailRAG Cross-Encoder: MS MARCO Enhanced},
  author = {PathfinderRAG Team},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/OloriBern/trailrag-cross-encoder-msmarco-enhanced}
}
```

## Model Card Contact

For questions about this model, please open an issue in the [PathfinderRAG repository](https://github.com/your-org/trail-rag-1) or contact the development team.

---

*This model card was automatically generated using the TrailRAG model card generator with authentic training metrics.*