File size: 14,660 Bytes
			
			| 854f0d0 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | from torch.utils.data import Dataset
from utils.misc_utils import read_pfm
import os
import numpy as np
import cv2
from PIL import Image
import torch
from torchvision import transforms as T
from data.scene import get_boundingbox
from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image
import json
from termcolor import colored
import imageio
from kornia import create_meshgrid
import open3d as o3d
def get_ray_directions(H, W, focal, center=None):
    """
    Get ray directions for all pixels in camera coordinate.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems
    Inputs:
        H, W, focal: image height, width and focal length
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    grid = create_meshgrid(H, W, normalized_coordinates=False)[0] + 0.5 # 1xHxWx2
    i, j = grid.unbind(-1)
    # the direction here is without +0.5 pixel centering as calibration is not so accurate
    # see https://github.com/bmild/nerf/issues/24
    cent = center if center is not None else [W / 2, H / 2]
    directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1)  # (H, W, 3)
    return directions
def load_K_Rt_from_P(filename, P=None):
    if P is None:
        lines = open(filename).read().splitlines()
        if len(lines) == 4:
            lines = lines[1:]
        lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
        P = np.asarray(lines).astype(np.float32).squeeze()
    out = cv2.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]
    K = K / K[2, 2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K
    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()  # ? why need transpose here
    pose[:3, 3] = (t[:3] / t[3])[:, 0]
    return intrinsics, pose  # ! return cam2world matrix here
# ! load one ref-image with multiple src-images in camera coordinate system
class BlenderPerView(Dataset):
    def __init__(self, root_dir, split, n_views=3, img_wh=(256, 256), downSample=1.0,
                 split_filepath=None, pair_filepath=None,
                 N_rays=512,
                 vol_dims=[128, 128, 128], batch_size=1,
                 clean_image=False, importance_sample=False, test_ref_views=[]):
        # print("root_dir: ", root_dir)
        self.root_dir = root_dir
        self.split = split
        self.n_views = n_views
        self.N_rays = N_rays
        self.batch_size = batch_size  # - used for construct new metas for gru fusion training
        self.clean_image = clean_image
        self.importance_sample = importance_sample
        self.test_ref_views = test_ref_views  # used for testing
        self.scale_factor = 1.0
        self.scale_mat = np.float32(np.diag([1, 1, 1, 1.0]))
        lvis_json_path = '/objaverse-processed/zero12345_img/lvis_split.json' # folder_id and uid
        with open(lvis_json_path, 'r') as f:
            lvis_paths = json.load(f)
            if self.split == 'train':
                self.lvis_paths = lvis_paths['train']
            else:
                self.lvis_paths = lvis_paths['val']
        if img_wh is not None:
            assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \
                'img_wh must both be multiples of 32!'
        pose_json_path = "/objaverse-processed/zero12345_img/zero12345_narrow_pose.json"
        with open(pose_json_path, 'r') as f:
            meta = json.load(f)
        
        self.img_ids = list(meta["c2ws"].keys()) # e.g. "view_0", "view_7", "view_0_2_10"
        self.img_wh = (256, 256)
        self.input_poses = np.array(list(meta["c2ws"].values()))
        intrinsic = np.eye(4)
        intrinsic[:3, :3] = np.array(meta["intrinsics"])
        self.intrinsic = intrinsic
        self.near_far = np.array(meta["near_far"])
        self.near_far[1] = 1.8
        self.define_transforms()
        self.blender2opencv = np.array(
            [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
        )
        
        self.c2ws = []
        self.w2cs = []
        self.near_fars = []
        # self.root_dir = root_dir
        for idx, img_id in enumerate(self.img_ids):
            pose = self.input_poses[idx]
            c2w = pose @ self.blender2opencv
            self.c2ws.append(c2w)
            self.w2cs.append(np.linalg.inv(c2w))
            self.near_fars.append(self.near_far)
        self.c2ws = np.stack(self.c2ws, axis=0)
        self.w2cs = np.stack(self.w2cs, axis=0)
        self.all_intrinsics = []  # the cam info of the whole scene
        self.all_extrinsics = []
        self.all_near_fars = []
        self.load_cam_info() 
        # * bounding box for rendering
        self.bbox_min = np.array([-1.0, -1.0, -1.0])
        self.bbox_max = np.array([1.0, 1.0, 1.0])
        # - used for cost volume regularization
        self.voxel_dims = torch.tensor(vol_dims, dtype=torch.float32)
        self.partial_vol_origin = torch.tensor([-1., -1., -1.], dtype=torch.float32)
        
    def define_transforms(self):
        self.transform = T.Compose([T.ToTensor()])
    def load_cam_info(self):
        for vid, img_id in enumerate(self.img_ids):
            intrinsic, extrinsic, near_far = self.intrinsic, np.linalg.inv(self.c2ws[vid]), self.near_far
            self.all_intrinsics.append(intrinsic)
            self.all_extrinsics.append(extrinsic)
            self.all_near_fars.append(near_far)
    def read_depth(self, filename):
        pass
    def read_mask(self, filename):
        mask_h = cv2.imread(filename, 0)
        mask_h = cv2.resize(mask_h, None, fx=self.downSample, fy=self.downSample,
                            interpolation=cv2.INTER_NEAREST)
        mask = cv2.resize(mask_h, None, fx=0.25, fy=0.25,
                          interpolation=cv2.INTER_NEAREST)
        mask[mask > 0] = 1  # the masks stored in png are not binary
        mask_h[mask_h > 0] = 1
        return mask, mask_h
    def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.):
        center, radius, bounds = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars)
        # print("center", center)
        # print("radius", radius)
        # print("bounds", bounds)
        # import ipdb; ipdb.set_trace()
        radius = radius * factor
        scale_mat = np.diag([radius, radius, radius, 1.0])
        scale_mat[:3, 3] = center.cpu().numpy()
        scale_mat = scale_mat.astype(np.float32)
        return scale_mat, 1. / radius.cpu().numpy()
    def __len__(self):
        return 4*len(self.lvis_paths)
    def read_depth(self, filename, near_bound, noisy_factor=1.0):
        pass
    def __getitem__(self, idx):
        idx = idx * 2
        sample = {}
        origin_idx = idx
        imgs, depths_h, masks_h = [], [], []  # full size (256, 256)
        intrinsics, w2cs, c2ws, near_fars = [], [], [], []  # record proj mats between views
        folder_uid_dict = self.lvis_paths[idx//8]
        idx = idx % 8 # [0, 7]
        folder_id = folder_uid_dict['folder_id']
        uid = folder_uid_dict['uid']
        # target view
        c2w = self.c2ws[idx]
        w2c = np.linalg.inv(c2w)
        w2c_ref = w2c
        w2c_ref_inv = np.linalg.inv(w2c_ref)
        w2cs.append(w2c @ w2c_ref_inv)
        c2ws.append(np.linalg.inv(w2c @ w2c_ref_inv))
        img_filename = os.path.join(self.root_dir, folder_id, uid, f'view_{idx}.png')
        depth_filename = os.path.join(os.path.join(self.root_dir, folder_id, uid, f'view_{idx}_depth_mm.png'))
        
        img = Image.open(img_filename)
        img = self.transform(img)  # (4, h, w)
        
        if img.shape[0] == 4:
            img = img[:3] * img[-1:] + (1 - img[-1:])  # blend A to RGB
        imgs += [img]
        depth_h = cv2.imread(depth_filename, cv2.IMREAD_UNCHANGED).astype(np.uint16) / 1000.0
        mask_h = depth_h > 0
        # print("valid pixels", np.sum(mask_h))
        directions = get_ray_directions(self.img_wh[1], self.img_wh[0], [self.intrinsic[0, 0], self.intrinsic[1, 1]])  # [H, W, 3]
        surface_points = directions * depth_h[..., None]  # [H, W, 3]
        distance = np.linalg.norm(surface_points, axis=-1)  # [H, W]
        depth_h = distance
        depths_h.append(depth_h)
        masks_h.append(mask_h)
        
        intrinsic = self.intrinsic
        intrinsics.append(intrinsic)
    
        near_fars.append(self.near_fars[idx])
        image_perm = 0  # only supervised on reference view
        mask_dilated = None
        # src_views = range(8+idx*4, 8+(idx+1)*4)
        src_views = range(8, 8 + 8 * 4)
        for vid in src_views:
            if (vid // 4) % 2 != 0:
                continue
            img_filename = os.path.join(self.root_dir, folder_id, uid, f'view_{(vid - 8) // 4}_{vid%4}_10.png')
            img = Image.open(img_filename)
            img_wh = self.img_wh
            img = self.transform(img)
            if img.shape[0] == 4:
                img = img[:3] * img[-1:] + (1 - img[-1:])  # blend A to RGB
            imgs += [img]
            depth_h = np.ones(img.shape[1:], dtype=np.float32)
            depths_h.append(depth_h)
            masks_h.append(np.ones(img.shape[1:], dtype=np.int32))
            near_fars.append(self.all_near_fars[vid])
            intrinsics.append(self.all_intrinsics[vid])
            w2cs.append(self.all_extrinsics[vid] @ w2c_ref_inv)
        # print("len(imgs)", len(imgs))
        # ! estimate scale_mat
        scale_mat, scale_factor = self.cal_scale_mat(
                                                     img_hw=[img_wh[1], img_wh[0]],
                                                     intrinsics=intrinsics, extrinsics=w2cs,
                                                     near_fars=near_fars, factor=1.1
                                                     )
        new_near_fars = []
        new_w2cs = []
        new_c2ws = []
        new_affine_mats = []
        new_depths_h = []
        for intrinsic, extrinsic, near_far, depth in zip(intrinsics, w2cs, near_fars, depths_h):
            P = intrinsic @ extrinsic @ scale_mat
            P = P[:3, :4]
            # - should use load_K_Rt_from_P() to obtain c2w
            c2w = load_K_Rt_from_P(None, P)[1]
            w2c = np.linalg.inv(c2w)
            new_w2cs.append(w2c)
            new_c2ws.append(c2w)
            affine_mat = np.eye(4)
            affine_mat[:3, :4] = intrinsic[:3, :3] @ w2c[:3, :4]
            new_affine_mats.append(affine_mat)
            camera_o = c2w[:3, 3]
            dist = np.sqrt(np.sum(camera_o ** 2))
            near = dist - 1
            far = dist + 1
            new_near_fars.append([0.95 * near, 1.05 * far])
            new_depths_h.append(depth * scale_factor)
        # print(new_near_fars)
        imgs = torch.stack(imgs).float()
        depths_h = np.stack(new_depths_h)
        masks_h = np.stack(masks_h)
        affine_mats = np.stack(new_affine_mats)
        intrinsics, w2cs, c2ws, near_fars = np.stack(intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), np.stack(
            new_near_fars)
        
        if self.split == 'train':
            start_idx = 0
        else:
            start_idx = 1
        view_ids = [idx] + list(src_views)
        sample['origin_idx'] = origin_idx
        sample['images'] = imgs  # (V, 3, H, W)
        sample['depths_h'] = torch.from_numpy(depths_h.astype(np.float32))  # (V, H, W)
        sample['masks_h'] = torch.from_numpy(masks_h.astype(np.float32))  # (V, H, W)
        sample['w2cs'] = torch.from_numpy(w2cs.astype(np.float32))  # (V, 4, 4)
        sample['c2ws'] = torch.from_numpy(c2ws.astype(np.float32))  # (V, 4, 4)
        sample['near_fars'] = torch.from_numpy(near_fars.astype(np.float32))  # (V, 2)
        sample['intrinsics'] = torch.from_numpy(intrinsics.astype(np.float32))[:, :3, :3]  # (V, 3, 3)
        sample['view_ids'] = torch.from_numpy(np.array(view_ids))
        sample['affine_mats'] = torch.from_numpy(affine_mats.astype(np.float32))  # ! in world space
        # sample['light_idx'] = torch.tensor(light_idx)
        sample['scan'] = folder_id
        sample['scale_factor'] = torch.tensor(scale_factor)
        sample['img_wh'] = torch.from_numpy(np.array(img_wh))
        sample['render_img_idx'] = torch.tensor(image_perm)
        sample['partial_vol_origin'] = self.partial_vol_origin
        sample['meta'] = str(folder_id) + "_" + str(uid) + "_refview" + str(view_ids[0])
        # - image to render
        sample['query_image'] = sample['images'][0]
        sample['query_c2w'] = sample['c2ws'][0]
        sample['query_w2c'] = sample['w2cs'][0]
        sample['query_intrinsic'] = sample['intrinsics'][0]
        sample['query_depth'] = sample['depths_h'][0]
        sample['query_mask'] = sample['masks_h'][0]
        sample['query_near_far'] = sample['near_fars'][0]
        sample['images'] = sample['images'][start_idx:]  # (V, 3, H, W)
        sample['depths_h'] = sample['depths_h'][start_idx:]  # (V, H, W)
        sample['masks_h'] = sample['masks_h'][start_idx:]  # (V, H, W)
        sample['w2cs'] = sample['w2cs'][start_idx:]  # (V, 4, 4)
        sample['c2ws'] = sample['c2ws'][start_idx:]  # (V, 4, 4)
        sample['intrinsics'] = sample['intrinsics'][start_idx:]  # (V, 3, 3)
        sample['view_ids'] = sample['view_ids'][start_idx:]
        sample['affine_mats'] = sample['affine_mats'][start_idx:]  # ! in world space
        sample['scale_mat'] = torch.from_numpy(scale_mat)
        sample['trans_mat'] = torch.from_numpy(w2c_ref_inv)
        # - generate rays
        if ('val' in self.split) or ('test' in self.split):
            sample_rays = gen_rays_from_single_image(
                img_wh[1], img_wh[0],
                sample['query_image'],
                sample['query_intrinsic'],
                sample['query_c2w'],
                depth=sample['query_depth'],
                mask=sample['query_mask'] if self.clean_image else None)
        else:
            sample_rays = gen_random_rays_from_single_image(
                img_wh[1], img_wh[0],
                self.N_rays,
                sample['query_image'],
                sample['query_intrinsic'],
                sample['query_c2w'],
                depth=sample['query_depth'],
                mask=sample['query_mask'] if self.clean_image else None,
                dilated_mask=mask_dilated,
                importance_sample=self.importance_sample)
        sample['rays'] = sample_rays
        return sample
 | 
