|  | import os | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from torch.utils.data import Dataset | 
					
						
						|  | from torchvision import transforms | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNBase(Dataset): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | txt_file, | 
					
						
						|  | data_root, | 
					
						
						|  | size=None, | 
					
						
						|  | interpolation="bicubic", | 
					
						
						|  | flip_p=0.5 | 
					
						
						|  | ): | 
					
						
						|  | self.data_paths = txt_file | 
					
						
						|  | self.data_root = data_root | 
					
						
						|  | with open(self.data_paths, "r") as f: | 
					
						
						|  | self.image_paths = f.read().splitlines() | 
					
						
						|  | self._length = len(self.image_paths) | 
					
						
						|  | self.labels = { | 
					
						
						|  | "relative_file_path_": [l for l in self.image_paths], | 
					
						
						|  | "file_path_": [os.path.join(self.data_root, l) | 
					
						
						|  | for l in self.image_paths], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | self.size = size | 
					
						
						|  | self.interpolation = {"linear": PIL.Image.LINEAR, | 
					
						
						|  | "bilinear": PIL.Image.BILINEAR, | 
					
						
						|  | "bicubic": PIL.Image.BICUBIC, | 
					
						
						|  | "lanczos": PIL.Image.LANCZOS, | 
					
						
						|  | }[interpolation] | 
					
						
						|  | self.flip = transforms.RandomHorizontalFlip(p=flip_p) | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self._length | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, i): | 
					
						
						|  | example = dict((k, self.labels[k][i]) for k in self.labels) | 
					
						
						|  | image = Image.open(example["file_path_"]) | 
					
						
						|  | if not image.mode == "RGB": | 
					
						
						|  | image = image.convert("RGB") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img = np.array(image).astype(np.uint8) | 
					
						
						|  | crop = min(img.shape[0], img.shape[1]) | 
					
						
						|  | h, w, = img.shape[0], img.shape[1] | 
					
						
						|  | img = img[(h - crop) // 2:(h + crop) // 2, | 
					
						
						|  | (w - crop) // 2:(w + crop) // 2] | 
					
						
						|  |  | 
					
						
						|  | image = Image.fromarray(img) | 
					
						
						|  | if self.size is not None: | 
					
						
						|  | image = image.resize((self.size, self.size), resample=self.interpolation) | 
					
						
						|  |  | 
					
						
						|  | image = self.flip(image) | 
					
						
						|  | image = np.array(image).astype(np.uint8) | 
					
						
						|  | example["image"] = (image / 127.5 - 1.0).astype(np.float32) | 
					
						
						|  | return example | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNChurchesTrain(LSUNBase): | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNChurchesValidation(LSUNBase): | 
					
						
						|  | def __init__(self, flip_p=0., **kwargs): | 
					
						
						|  | super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches", | 
					
						
						|  | flip_p=flip_p, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNBedroomsTrain(LSUNBase): | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNBedroomsValidation(LSUNBase): | 
					
						
						|  | def __init__(self, flip_p=0.0, **kwargs): | 
					
						
						|  | super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms", | 
					
						
						|  | flip_p=flip_p, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNCatsTrain(LSUNBase): | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSUNCatsValidation(LSUNBase): | 
					
						
						|  | def __init__(self, flip_p=0., **kwargs): | 
					
						
						|  | super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats", | 
					
						
						|  | flip_p=flip_p, **kwargs) | 
					
						
						|  |  |