reign12 commited on
Commit
8adb604
Β·
verified Β·
1 Parent(s): 3ca998c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -3
README.md CHANGED
@@ -1,3 +1,149 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ <div align="center">
5
+
6
+ # Open Reasoner Zero
7
+
8
+ <img src="figure/logo.jpg" width="300"/>
9
+
10
+ <div>
11
+ <!-- I want to use a tide emoji here -->
12
+
13
+ An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
14
+ </div>
15
+ </div>
16
+
17
+ <div align="center" style="line-height: 1;">
18
+ <a href="https://huggingface.co/Open-Reasoner-Zero" target="_blank"><img alt="Hugging Face"
19
+ src="https://img.shields.io/badge/HuggingFace-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor"/></a>
20
+
21
+ <a href="https://yasminezhang.notion.site/Open-Reasoner-Zero-19e12cf72d418007b9cdebf44b0e7903" target="_blank">
22
+ <img alt="Notion Page"
23
+ src="https://img.shields.io/badge/Notion-%23000000.svg?style=for-the-badge&logo=notion&logoColor=white"/></a>
24
+
25
+ <br>
26
+ <a href="https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf"><b>Paper PDF Link [WIP]</b>πŸ‘οΈ</a>
27
+ </div>
28
+
29
+ <div>
30
+ <br>
31
+
32
+ </div>
33
+
34
+ ![](figure/teaser.png)
35
+
36
+ *Figure 1 | Evaluation performance of Open-Reasoner-Zero-\{7B, 32B\}. We report the average accuracy on the benchmark dataset for each question with 16 responses. Notably, Open-Reasoner-Zero-32B outperforms DeepSeek-R1-Zero-Qwen-32B on the GPQA Diamond benchmark while only requiring 1/30 of the training steps. We are continuing to scale up these RL settings until this preprint is released, as there is no sign of saturation.*
37
+
38
+ ![](figure/train_curve.png)
39
+ *Figure 2 | Train Time Scale up both on Reward and Response Length of Open-Reasoner-Zero-{7B, 32B}.*
40
+
41
+ ## Overview
42
+ 🌊 We introduce **Open-Reasoner-Zero**, the first open source implementation of large-scale reasoning-oriented RL training focusing on scalability, simplicity and accessibility.
43
+
44
+ To enable broader participation in this pivotal moment we witnessed and accelerate research towards artificial general intelligence (AGI),
45
+ we release our source code, parameter settings, training data, and model weights.
46
+ Please refer to our [paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf) for more insights.
47
+
48
+ **Let the Reasoner-Zero tide rise!**
49
+
50
+ ## Releases πŸ“¦
51
+
52
+ <strong>[2025/02/18]</strong>
53
+ We release `Open-Reasoner-Zero`.
54
+
55
+ As part of this release, we open-source:
56
+ - 🌊 [Paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf) on our comprehensive analysis and insights in Reasoner-Zero training
57
+ - πŸ€— HF Model [`Open-Reasoner-Zero-7B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) and [`Open-Reasoner-Zero-32B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-32B)
58
+ - 🎁 [`Our curated 57k training data`](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/data)
59
+ - πŸ“„ [Training Scripts](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/playground) to enjoy your own Reasoner-Zero journey!
60
+
61
+ ## Key Features in Codebase πŸ”‘
62
+
63
+ - Adopt single controller trainer design, flexible and researcher-friendly.
64
+ - Colocate training and generation in the same GPUs to maximize GPU utilization.
65
+
66
+ ## Getting Started πŸš€
67
+ ### Installation & Training Scripts
68
+ We release our [Dockerfile](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/docker/Dockerfile) in [docker](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/docker) folder to facilitate the reproducibility of our training.
69
+
70
+ To install the package, run:
71
+ ```bash
72
+ pip install -e .
73
+ ```
74
+
75
+ #### Start Orz-7B PPO Training
76
+ debug running command in single node:
77
+ ```bash
78
+ DEBUG_MODE=True python -m playground.orz_7b_ppo
79
+ ```
80
+
81
+ Multi-node Training:
82
+
83
+ first on master node, run:
84
+ ```bash
85
+ ray start --head
86
+ ```
87
+
88
+ then on other nodes, run:
89
+ ```bash
90
+ ray start --address='<master-node-ip>:<master-node-port>'
91
+ ```
92
+
93
+ then on master node, run:
94
+ ```bash
95
+ python -m playground.orz_7b_ppo
96
+ ```
97
+
98
+ Your training log will be shown in the master node terminal.
99
+
100
+ #### Start Orz-32B PPO Training
101
+ running command in 8 nodes:
102
+
103
+ first on master node, run:
104
+ ```bash
105
+ ray start --head
106
+ ```
107
+
108
+ then on other nodes, run:
109
+ ```bash
110
+ ray start --address='<master-node-ip>:<master-node-port>'
111
+ ```
112
+
113
+ then on master node, run:
114
+ ```bash
115
+ python -m playground.orz_32b_ppo
116
+ ```
117
+
118
+ Your training log will be shown in the master node terminal.
119
+
120
+ ### Data
121
+
122
+ We release all of 57k curated high-quality training data in the [`data`](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/data) folder.
123
+
124
+ The details for how to collect data are described in our [paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf).
125
+
126
+ ## Acknowledgements
127
+
128
+ - This work was supported by computing resources and valuable feedback provided by [StepFun](https://www.stepfun.com/) and Tsinghua University.
129
+ - Our training framework is built on [OpenRLHF](https://github.com/OpenRLHF/OpenRLHF), [vllm](https://github.com/vllm-project/vllm), [DeepSpeed](https://github.com/deepspeedai/DeepSpeed) and [ray](https://github.com/ray-project/ray).
130
+ - Our model is based on [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) and [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B).
131
+ - We thank [Project Numina](https://projectnumina.ai/) and [Tulu3](https://allenai.org/blog/tulu-3-technical) for their collected open sourced data.
132
+
133
+ ## Advertisement Time πŸ“£
134
+
135
+ We are hiring talented researchers and engineers to join our team. If you are interested in our project and would like to contribute to the reasoner scale-up all the way to AGI, please feel free to reach out to us at [email protected]
136
+
137
+
138
+ [![Star History Chart](https://api.star-history.com/svg?repos=Open-Reasoner-Zero/Open-Reasoner-Zero&type=Timeline)](https://star-history.com/#Open-Reasoner-Zero/Open-Reasoner-Zero&Timeline)
139
+
140
+ ## Citation
141
+
142
+ ```bibtex
143
+ @misc{OpenReasonerZero2025,
144
+ title={Open-Reasoner-Zero: An Open Source Approach to Scaling Reinforcement Learning on the Base Model},
145
+ author={Jingcheng Hu and Yinmin Zhang and Qi Han and Daxin Jiang and Xiangyu Zhang, Heung-Yeung Shum},
146
+ year={2025},
147
+ howpublished={\url{https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero}},
148
+ }
149
+ ```