--- license: mit pipeline_tag: image-text-to-text library_name: transformers base_model: - OpenGVLab/InternViT-300M-448px - internlm/internlm2_5-7b-chat new_version: OpenGVLab/InternVL2_5-8B base_model_relation: merge language: - multilingual tags: - internvl - custom_code --- # InternOmni ## Quick Start We provide an example code to run `InternOmni` using `transformers`. > Please use transformers>=4.37.2 to ensure the model works normally. ### Inference with Transformers ```python import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import librosa from transformers.processing_utils import ProcessorMixin import torch class WhisperProcessor(ProcessorMixin): attributes = ["feature_extractor"] feature_extractor_class = "WhisperFeatureExtractor" def __init__(self, feature_extractor): super().__init__(feature_extractor) self.current_processor = self.feature_extractor self._in_target_context_manager = False def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) def get_T_after_cnn(self,L_in, dilation=1): for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "): L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1 L_out = 1 + L_out // stride L_in = L_out return L_out def __call__(self, *args, **kwargs): if self._in_target_context_manager: return self.current_processor(*args, **kwargs) audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", 16000) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s mel_len = L // 160 audio_len_after_cnn = self.get_T_after_cnn(mel_len) audio_token_num = (audio_len_after_cnn - 2) // 2 + 1 inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) inputs['audio_len_after_cnn'] = torch.tensor(audio_len_after_cnn, dtype=torch.long) inputs['audio_token_num'] = torch.tensor(audio_token_num, dtype=torch.long) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.tokenizer.decode(*args, **kwargs) def get_prompt_ids(self, text: str, return_tensors="np"): return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors) IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def load_audio(audio_file, audio_processor): audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000 audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt") input_features = audio_process_values['input_features'] audio_len_after_cnn = audio_process_values['audio_len_after_cnn'] audio_token_num = audio_process_values['audio_token_num'] audio_input = {'audio_values': input_features, 'audio_len_after_cnn': audio_len_after_cnn, 'audio_token_num': audio_token_num, } return audio_input path = 'OpenGVLab/InternOmni' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) audio_processor = WhisperProcessor.from_pretrained(path) # set the max number of tiles in `max_num` pixel_values = load_image('./1.jpg', max_num=12).to(torch.bfloat16).cuda() audio = load_audio('./1.wav', audio_processor) generation_config = dict(max_new_tokens=1024, do_sample=True) # question = '请将这段语音识别成文字,并以文字形式展示出来。' response = model.Audio_chat(tokenizer=tokenizer, pixel_values=pixel_values,audio=audio, question=None, generation_config) print(f'Assistant: {response}') ``` ## License This project is released under the MIT License. This project uses the pre-trained internVL2_8b as a component, which is licensed under the Apache License 2.0. ## Citation If you find this project useful in your research, please consider citing: ```BibTeX @article{chen2024expanding, title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling}, author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others}, journal={arXiv preprint arXiv:2412.05271}, year={2024} } @article{gao2024mini, title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance}, author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others}, journal={arXiv preprint arXiv:2410.16261}, year={2024} } @article{chen2024far, title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites}, author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others}, journal={arXiv preprint arXiv:2404.16821}, year={2024} } @inproceedings{chen2024internvl, title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks}, author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={24185--24198}, year={2024} } ```