Upload folder using huggingface_hub
Browse files- added_tokens.json +22 -0
- config.json +298 -0
- configuration_intern_vit.py +119 -0
- configuration_internvl_chat.py +99 -0
- configuration_phi3.py +211 -0
- conversation.py +383 -0
- generation_config.json +4 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +548 -0
- modeling_intern_vit.py +434 -0
- modeling_internvl_chat.py +323 -0
- modeling_phi3.py +1601 -0
- special_tokens_map.json +41 -0
- tokenizer.model +3 -0
- tokenizer_config.json +214 -0
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "</box>": 32019,
         | 
| 3 | 
            +
              "</img>": 32012,
         | 
| 4 | 
            +
              "</quad>": 32015,
         | 
| 5 | 
            +
              "</ref>": 32017,
         | 
| 6 | 
            +
              "<IMG_CONTEXT>": 32013,
         | 
| 7 | 
            +
              "<box>": 32018,
         | 
| 8 | 
            +
              "<img>": 32011,
         | 
| 9 | 
            +
              "<quad>": 32014,
         | 
| 10 | 
            +
              "<ref>": 32016,
         | 
| 11 | 
            +
              "<|assistant|>": 32001,
         | 
| 12 | 
            +
              "<|endoftext|>": 32000,
         | 
| 13 | 
            +
              "<|end|>": 32007,
         | 
| 14 | 
            +
              "<|placeholder1|>": 32002,
         | 
| 15 | 
            +
              "<|placeholder2|>": 32003,
         | 
| 16 | 
            +
              "<|placeholder3|>": 32004,
         | 
| 17 | 
            +
              "<|placeholder4|>": 32005,
         | 
| 18 | 
            +
              "<|placeholder5|>": 32008,
         | 
| 19 | 
            +
              "<|placeholder6|>": 32009,
         | 
| 20 | 
            +
              "<|system|>": 32006,
         | 
| 21 | 
            +
              "<|user|>": 32010
         | 
| 22 | 
            +
            }
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,298 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_commit_hash": null,
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "InternVLChatModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "auto_map": {
         | 
| 7 | 
            +
                "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
         | 
| 8 | 
            +
                "AutoModel": "modeling_internvl_chat.InternVLChatModel",
         | 
| 9 | 
            +
                "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              "downsample_ratio": 0.5,
         | 
| 12 | 
            +
              "dynamic_image_size": true,
         | 
| 13 | 
            +
              "force_image_size": 448,
         | 
| 14 | 
            +
              "llm_config": {
         | 
| 15 | 
            +
                "_name_or_path": "./pretrained/Phi-3-mini-128k-instruct",
         | 
| 16 | 
            +
                "add_cross_attention": false,
         | 
| 17 | 
            +
                "architectures": [
         | 
| 18 | 
            +
                  "Phi3ForCausalLM"
         | 
| 19 | 
            +
                ],
         | 
| 20 | 
            +
                "attention_dropout": 0.0,
         | 
| 21 | 
            +
                "auto_map": {
         | 
| 22 | 
            +
                  "AutoConfig": "configuration_phi3.Phi3Config",
         | 
| 23 | 
            +
                  "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
         | 
| 24 | 
            +
                },
         | 
| 25 | 
            +
                "bad_words_ids": null,
         | 
| 26 | 
            +
                "begin_suppress_tokens": null,
         | 
| 27 | 
            +
                "bos_token_id": 1,
         | 
| 28 | 
            +
                "chunk_size_feed_forward": 0,
         | 
| 29 | 
            +
                "cross_attention_hidden_size": null,
         | 
| 30 | 
            +
                "decoder_start_token_id": null,
         | 
| 31 | 
            +
                "diversity_penalty": 0.0,
         | 
| 32 | 
            +
                "do_sample": false,
         | 
| 33 | 
            +
                "early_stopping": false,
         | 
| 34 | 
            +
                "embd_pdrop": 0.0,
         | 
| 35 | 
            +
                "encoder_no_repeat_ngram_size": 0,
         | 
| 36 | 
            +
                "eos_token_id": 32000,
         | 
| 37 | 
            +
                "exponential_decay_length_penalty": null,
         | 
| 38 | 
            +
                "finetuning_task": null,
         | 
| 39 | 
            +
                "forced_bos_token_id": null,
         | 
| 40 | 
            +
                "forced_eos_token_id": null,
         | 
| 41 | 
            +
                "hidden_act": "silu",
         | 
| 42 | 
            +
                "hidden_size": 3072,
         | 
| 43 | 
            +
                "id2label": {
         | 
| 44 | 
            +
                  "0": "LABEL_0",
         | 
| 45 | 
            +
                  "1": "LABEL_1"
         | 
| 46 | 
            +
                },
         | 
| 47 | 
            +
                "initializer_range": 0.02,
         | 
| 48 | 
            +
                "intermediate_size": 8192,
         | 
| 49 | 
            +
                "is_decoder": false,
         | 
| 50 | 
            +
                "is_encoder_decoder": false,
         | 
| 51 | 
            +
                "label2id": {
         | 
| 52 | 
            +
                  "LABEL_0": 0,
         | 
| 53 | 
            +
                  "LABEL_1": 1
         | 
| 54 | 
            +
                },
         | 
| 55 | 
            +
                "length_penalty": 1.0,
         | 
| 56 | 
            +
                "max_length": 20,
         | 
| 57 | 
            +
                "max_position_embeddings": 131072,
         | 
| 58 | 
            +
                "min_length": 0,
         | 
| 59 | 
            +
                "model_type": "phi3",
         | 
| 60 | 
            +
                "no_repeat_ngram_size": 0,
         | 
| 61 | 
            +
                "num_attention_heads": 32,
         | 
| 62 | 
            +
                "num_beam_groups": 1,
         | 
| 63 | 
            +
                "num_beams": 1,
         | 
| 64 | 
            +
                "num_hidden_layers": 32,
         | 
| 65 | 
            +
                "num_key_value_heads": 32,
         | 
| 66 | 
            +
                "num_return_sequences": 1,
         | 
| 67 | 
            +
                "original_max_position_embeddings": 4096,
         | 
| 68 | 
            +
                "output_attentions": false,
         | 
| 69 | 
            +
                "output_hidden_states": false,
         | 
| 70 | 
            +
                "output_scores": false,
         | 
| 71 | 
            +
                "pad_token_id": 32000,
         | 
| 72 | 
            +
                "prefix": null,
         | 
| 73 | 
            +
                "problem_type": null,
         | 
| 74 | 
            +
                "pruned_heads": {},
         | 
| 75 | 
            +
                "remove_invalid_values": false,
         | 
| 76 | 
            +
                "repetition_penalty": 1.0,
         | 
| 77 | 
            +
                "resid_pdrop": 0.0,
         | 
| 78 | 
            +
                "return_dict": true,
         | 
| 79 | 
            +
                "return_dict_in_generate": false,
         | 
| 80 | 
            +
                "rms_norm_eps": 1e-05,
         | 
| 81 | 
            +
                "rope_scaling": {
         | 
| 82 | 
            +
                  "long_factor": [
         | 
| 83 | 
            +
                    1.0299999713897705,
         | 
| 84 | 
            +
                    1.0499999523162842,
         | 
| 85 | 
            +
                    1.0499999523162842,
         | 
| 86 | 
            +
                    1.0799999237060547,
         | 
| 87 | 
            +
                    1.2299998998641968,
         | 
| 88 | 
            +
                    1.2299998998641968,
         | 
| 89 | 
            +
                    1.2999999523162842,
         | 
| 90 | 
            +
                    1.4499999284744263,
         | 
| 91 | 
            +
                    1.5999999046325684,
         | 
| 92 | 
            +
                    1.6499998569488525,
         | 
| 93 | 
            +
                    1.8999998569488525,
         | 
| 94 | 
            +
                    2.859999895095825,
         | 
| 95 | 
            +
                    3.68999981880188,
         | 
| 96 | 
            +
                    5.419999599456787,
         | 
| 97 | 
            +
                    5.489999771118164,
         | 
| 98 | 
            +
                    5.489999771118164,
         | 
| 99 | 
            +
                    9.09000015258789,
         | 
| 100 | 
            +
                    11.579999923706055,
         | 
| 101 | 
            +
                    15.65999984741211,
         | 
| 102 | 
            +
                    15.769999504089355,
         | 
| 103 | 
            +
                    15.789999961853027,
         | 
| 104 | 
            +
                    18.360000610351562,
         | 
| 105 | 
            +
                    21.989999771118164,
         | 
| 106 | 
            +
                    23.079999923706055,
         | 
| 107 | 
            +
                    30.009998321533203,
         | 
| 108 | 
            +
                    32.35000228881836,
         | 
| 109 | 
            +
                    32.590003967285156,
         | 
| 110 | 
            +
                    35.56000518798828,
         | 
| 111 | 
            +
                    39.95000457763672,
         | 
| 112 | 
            +
                    53.840003967285156,
         | 
| 113 | 
            +
                    56.20000457763672,
         | 
| 114 | 
            +
                    57.95000457763672,
         | 
| 115 | 
            +
                    59.29000473022461,
         | 
| 116 | 
            +
                    59.77000427246094,
         | 
| 117 | 
            +
                    59.920005798339844,
         | 
| 118 | 
            +
                    61.190006256103516,
         | 
| 119 | 
            +
                    61.96000671386719,
         | 
| 120 | 
            +
                    62.50000762939453,
         | 
| 121 | 
            +
                    63.3700065612793,
         | 
| 122 | 
            +
                    63.48000717163086,
         | 
| 123 | 
            +
                    63.48000717163086,
         | 
| 124 | 
            +
                    63.66000747680664,
         | 
| 125 | 
            +
                    63.850006103515625,
         | 
| 126 | 
            +
                    64.08000946044922,
         | 
| 127 | 
            +
                    64.760009765625,
         | 
| 128 | 
            +
                    64.80001068115234,
         | 
| 129 | 
            +
                    64.81001281738281,
         | 
| 130 | 
            +
                    64.81001281738281
         | 
| 131 | 
            +
                  ],
         | 
| 132 | 
            +
                  "short_factor": [
         | 
| 133 | 
            +
                    1.05,
         | 
| 134 | 
            +
                    1.05,
         | 
| 135 | 
            +
                    1.05,
         | 
| 136 | 
            +
                    1.1,
         | 
| 137 | 
            +
                    1.1,
         | 
| 138 | 
            +
                    1.1500000000000001,
         | 
| 139 | 
            +
                    1.2000000000000002,
         | 
| 140 | 
            +
                    1.2500000000000002,
         | 
| 141 | 
            +
                    1.3000000000000003,
         | 
| 142 | 
            +
                    1.3500000000000003,
         | 
| 143 | 
            +
                    1.5000000000000004,
         | 
| 144 | 
            +
                    2.000000000000001,
         | 
| 145 | 
            +
                    2.000000000000001,
         | 
| 146 | 
            +
                    2.000000000000001,
         | 
| 147 | 
            +
                    2.000000000000001,
         | 
| 148 | 
            +
                    2.000000000000001,
         | 
| 149 | 
            +
                    2.000000000000001,
         | 
| 150 | 
            +
                    2.000000000000001,
         | 
| 151 | 
            +
                    2.000000000000001,
         | 
| 152 | 
            +
                    2.000000000000001,
         | 
| 153 | 
            +
                    2.000000000000001,
         | 
| 154 | 
            +
                    2.000000000000001,
         | 
| 155 | 
            +
                    2.000000000000001,
         | 
| 156 | 
            +
                    2.000000000000001,
         | 
| 157 | 
            +
                    2.000000000000001,
         | 
| 158 | 
            +
                    2.000000000000001,
         | 
| 159 | 
            +
                    2.000000000000001,
         | 
| 160 | 
            +
                    2.000000000000001,
         | 
| 161 | 
            +
                    2.000000000000001,
         | 
| 162 | 
            +
                    2.000000000000001,
         | 
| 163 | 
            +
                    2.000000000000001,
         | 
| 164 | 
            +
                    2.000000000000001,
         | 
| 165 | 
            +
                    2.0500000000000007,
         | 
| 166 | 
            +
                    2.0500000000000007,
         | 
| 167 | 
            +
                    2.0500000000000007,
         | 
| 168 | 
            +
                    2.1000000000000005,
         | 
| 169 | 
            +
                    2.1000000000000005,
         | 
| 170 | 
            +
                    2.1000000000000005,
         | 
| 171 | 
            +
                    2.1500000000000004,
         | 
| 172 | 
            +
                    2.1500000000000004,
         | 
| 173 | 
            +
                    2.3499999999999996,
         | 
| 174 | 
            +
                    2.549999999999999,
         | 
| 175 | 
            +
                    2.5999999999999988,
         | 
| 176 | 
            +
                    2.5999999999999988,
         | 
| 177 | 
            +
                    2.7499999999999982,
         | 
| 178 | 
            +
                    2.849999999999998,
         | 
| 179 | 
            +
                    2.849999999999998,
         | 
| 180 | 
            +
                    2.9499999999999975
         | 
| 181 | 
            +
                  ],
         | 
| 182 | 
            +
                  "type": "su"
         | 
| 183 | 
            +
                },
         | 
| 184 | 
            +
                "rope_theta": 10000.0,
         | 
| 185 | 
            +
                "sep_token_id": null,
         | 
| 186 | 
            +
                "sliding_window": 262144,
         | 
| 187 | 
            +
                "suppress_tokens": null,
         | 
| 188 | 
            +
                "task_specific_params": null,
         | 
| 189 | 
            +
                "temperature": 1.0,
         | 
| 190 | 
            +
                "tf_legacy_loss": false,
         | 
| 191 | 
            +
                "tie_encoder_decoder": false,
         | 
| 192 | 
            +
                "tie_word_embeddings": false,
         | 
| 193 | 
            +
                "tokenizer_class": null,
         | 
| 194 | 
            +
                "top_k": 50,
         | 
| 195 | 
            +
                "top_p": 1.0,
         | 
| 196 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 197 | 
            +
                "torchscript": false,
         | 
| 198 | 
            +
                "transformers_version": "4.37.2",
         | 
| 199 | 
            +
                "typical_p": 1.0,
         | 
| 200 | 
            +
                "use_bfloat16": true,
         | 
| 201 | 
            +
                "use_cache": true,
         | 
| 202 | 
            +
                "vocab_size": 32020
         | 
| 203 | 
            +
              },
         | 
| 204 | 
            +
              "max_dynamic_patch": 12,
         | 
| 205 | 
            +
              "min_dynamic_patch": 1,
         | 
| 206 | 
            +
              "model_type": "internvl_chat",
         | 
| 207 | 
            +
              "ps_version": "v2",
         | 
| 208 | 
            +
              "select_layer": -1,
         | 
| 209 | 
            +
              "template": "phi3-chat",
         | 
| 210 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 211 | 
            +
              "use_backbone_lora": 0,
         | 
| 212 | 
            +
              "use_llm_lora": 0,
         | 
| 213 | 
            +
              "use_thumbnail": true,
         | 
| 214 | 
            +
              "vision_config": {
         | 
| 215 | 
            +
                "_name_or_path": "",
         | 
| 216 | 
            +
                "add_cross_attention": false,
         | 
| 217 | 
            +
                "architectures": [
         | 
| 218 | 
            +
                  "InternVisionModel"
         | 
| 219 | 
            +
                ],
         | 
| 220 | 
            +
                "attention_dropout": 0.0,
         | 
| 221 | 
            +
                "bad_words_ids": null,
         | 
| 222 | 
            +
                "begin_suppress_tokens": null,
         | 
| 223 | 
            +
                "bos_token_id": null,
         | 
| 224 | 
            +
                "chunk_size_feed_forward": 0,
         | 
| 225 | 
            +
                "cross_attention_hidden_size": null,
         | 
| 226 | 
            +
                "decoder_start_token_id": null,
         | 
| 227 | 
            +
                "diversity_penalty": 0.0,
         | 
| 228 | 
            +
                "do_sample": false,
         | 
| 229 | 
            +
                "drop_path_rate": 0.1,
         | 
| 230 | 
            +
                "dropout": 0.0,
         | 
| 231 | 
            +
                "early_stopping": false,
         | 
| 232 | 
            +
                "encoder_no_repeat_ngram_size": 0,
         | 
| 233 | 
            +
                "eos_token_id": null,
         | 
| 234 | 
            +
                "exponential_decay_length_penalty": null,
         | 
| 235 | 
            +
                "finetuning_task": null,
         | 
| 236 | 
            +
                "forced_bos_token_id": null,
         | 
| 237 | 
            +
                "forced_eos_token_id": null,
         | 
| 238 | 
            +
                "hidden_act": "gelu",
         | 
| 239 | 
            +
                "hidden_size": 1024,
         | 
| 240 | 
            +
                "id2label": {
         | 
| 241 | 
            +
                  "0": "LABEL_0",
         | 
| 242 | 
            +
                  "1": "LABEL_1"
         | 
| 243 | 
            +
                },
         | 
| 244 | 
            +
                "image_size": 448,
         | 
| 245 | 
            +
                "initializer_factor": 1.0,
         | 
| 246 | 
            +
                "initializer_range": 0.02,
         | 
| 247 | 
            +
                "intermediate_size": 4096,
         | 
| 248 | 
            +
                "is_decoder": false,
         | 
| 249 | 
            +
                "is_encoder_decoder": false,
         | 
| 250 | 
            +
                "label2id": {
         | 
| 251 | 
            +
                  "LABEL_0": 0,
         | 
| 252 | 
            +
                  "LABEL_1": 1
         | 
| 253 | 
            +
                },
         | 
| 254 | 
            +
                "layer_norm_eps": 1e-06,
         | 
| 255 | 
            +
                "length_penalty": 1.0,
         | 
| 256 | 
            +
                "max_length": 20,
         | 
| 257 | 
            +
                "min_length": 0,
         | 
| 258 | 
            +
                "model_type": "intern_vit_6b",
         | 
| 259 | 
            +
                "no_repeat_ngram_size": 0,
         | 
| 260 | 
            +
                "norm_type": "layer_norm",
         | 
| 261 | 
            +
                "num_attention_heads": 16,
         | 
| 262 | 
            +
                "num_beam_groups": 1,
         | 
| 263 | 
            +
                "num_beams": 1,
         | 
| 264 | 
            +
                "num_channels": 3,
         | 
| 265 | 
            +
                "num_hidden_layers": 24,
         | 
| 266 | 
            +
                "num_return_sequences": 1,
         | 
| 267 | 
            +
                "output_attentions": false,
         | 
| 268 | 
            +
                "output_hidden_states": false,
         | 
| 269 | 
            +
                "output_scores": false,
         | 
| 270 | 
            +
                "pad_token_id": null,
         | 
| 271 | 
            +
                "patch_size": 14,
         | 
| 272 | 
            +
                "prefix": null,
         | 
| 273 | 
            +
                "problem_type": null,
         | 
| 274 | 
            +
                "pruned_heads": {},
         | 
| 275 | 
            +
                "qk_normalization": false,
         | 
| 276 | 
            +
                "qkv_bias": true,
         | 
| 277 | 
            +
                "remove_invalid_values": false,
         | 
| 278 | 
            +
                "repetition_penalty": 1.0,
         | 
| 279 | 
            +
                "return_dict": true,
         | 
| 280 | 
            +
                "return_dict_in_generate": false,
         | 
| 281 | 
            +
                "sep_token_id": null,
         | 
| 282 | 
            +
                "suppress_tokens": null,
         | 
| 283 | 
            +
                "task_specific_params": null,
         | 
| 284 | 
            +
                "temperature": 1.0,
         | 
| 285 | 
            +
                "tf_legacy_loss": false,
         | 
| 286 | 
            +
                "tie_encoder_decoder": false,
         | 
| 287 | 
            +
                "tie_word_embeddings": true,
         | 
| 288 | 
            +
                "tokenizer_class": null,
         | 
| 289 | 
            +
                "top_k": 50,
         | 
| 290 | 
            +
                "top_p": 1.0,
         | 
| 291 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 292 | 
            +
                "torchscript": false,
         | 
| 293 | 
            +
                "transformers_version": "4.37.2",
         | 
| 294 | 
            +
                "typical_p": 1.0,
         | 
| 295 | 
            +
                "use_bfloat16": true,
         | 
| 296 | 
            +
                "use_flash_attn": true
         | 
| 297 | 
            +
              }
         | 
| 298 | 
            +
            }
         | 
    	
        configuration_intern_vit.py
    ADDED
    
    | @@ -0,0 +1,119 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2023 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
            import os
         | 
| 7 | 
            +
            from typing import Union
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 10 | 
            +
            from transformers.utils import logging
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            class InternVisionConfig(PretrainedConfig):
         | 
| 16 | 
            +
                r"""
         | 
| 17 | 
            +
                This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
         | 
| 18 | 
            +
                instantiate a vision encoder according to the specified arguments, defining the model architecture.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 21 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                Args:
         | 
| 24 | 
            +
                    num_channels (`int`, *optional*, defaults to 3):
         | 
| 25 | 
            +
                        Number of color channels in the input images (e.g., 3 for RGB).
         | 
| 26 | 
            +
                    patch_size (`int`, *optional*, defaults to 14):
         | 
| 27 | 
            +
                        The size (resolution) of each patch.
         | 
| 28 | 
            +
                    image_size (`int`, *optional*, defaults to 224):
         | 
| 29 | 
            +
                        The size (resolution) of each image.
         | 
| 30 | 
            +
                    qkv_bias (`bool`, *optional*, defaults to `False`):
         | 
| 31 | 
            +
                        Whether to add a bias to the queries and values in the self-attention layers.
         | 
| 32 | 
            +
                    hidden_size (`int`, *optional*, defaults to 3200):
         | 
| 33 | 
            +
                        Dimensionality of the encoder layers and the pooler layer.
         | 
| 34 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 25):
         | 
| 35 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 36 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 12800):
         | 
| 37 | 
            +
                        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         | 
| 38 | 
            +
                    qk_normalization (`bool`, *optional*, defaults to `True`):
         | 
| 39 | 
            +
                        Whether to normalize the queries and keys in the self-attention layers.
         | 
| 40 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 48):
         | 
| 41 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 42 | 
            +
                    use_flash_attn (`bool`, *optional*, defaults to `True`):
         | 
| 43 | 
            +
                        Whether to use flash attention mechanism.
         | 
| 44 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
         | 
| 45 | 
            +
                        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
         | 
| 46 | 
            +
                        `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
         | 
| 47 | 
            +
                    layer_norm_eps (`float`, *optional*, defaults to 1e-6):
         | 
| 48 | 
            +
                        The epsilon used by the layer normalization layers.
         | 
| 49 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0):
         | 
| 50 | 
            +
                        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
         | 
| 51 | 
            +
                    drop_path_rate (`float`, *optional*, defaults to 0.0):
         | 
| 52 | 
            +
                        Dropout rate for stochastic depth.
         | 
| 53 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 54 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 55 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 56 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 57 | 
            +
                    initializer_factor (`float`, *optional*, defaults to 0.1):
         | 
| 58 | 
            +
                        A factor for layer scale.
         | 
| 59 | 
            +
                """
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                model_type = 'intern_vit_6b'
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                def __init__(
         | 
| 64 | 
            +
                        self,
         | 
| 65 | 
            +
                        num_channels=3,
         | 
| 66 | 
            +
                        patch_size=14,
         | 
| 67 | 
            +
                        image_size=224,
         | 
| 68 | 
            +
                        qkv_bias=False,
         | 
| 69 | 
            +
                        hidden_size=3200,
         | 
| 70 | 
            +
                        num_attention_heads=25,
         | 
| 71 | 
            +
                        intermediate_size=12800,
         | 
| 72 | 
            +
                        qk_normalization=True,
         | 
| 73 | 
            +
                        num_hidden_layers=48,
         | 
| 74 | 
            +
                        use_flash_attn=True,
         | 
| 75 | 
            +
                        hidden_act='gelu',
         | 
| 76 | 
            +
                        norm_type='rms_norm',
         | 
| 77 | 
            +
                        layer_norm_eps=1e-6,
         | 
| 78 | 
            +
                        dropout=0.0,
         | 
| 79 | 
            +
                        drop_path_rate=0.0,
         | 
| 80 | 
            +
                        attention_dropout=0.0,
         | 
| 81 | 
            +
                        initializer_range=0.02,
         | 
| 82 | 
            +
                        initializer_factor=0.1,
         | 
| 83 | 
            +
                        **kwargs,
         | 
| 84 | 
            +
                ):
         | 
| 85 | 
            +
                    super().__init__(**kwargs)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    self.hidden_size = hidden_size
         | 
| 88 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 89 | 
            +
                    self.dropout = dropout
         | 
| 90 | 
            +
                    self.drop_path_rate = drop_path_rate
         | 
| 91 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 92 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 93 | 
            +
                    self.num_channels = num_channels
         | 
| 94 | 
            +
                    self.patch_size = patch_size
         | 
| 95 | 
            +
                    self.image_size = image_size
         | 
| 96 | 
            +
                    self.initializer_range = initializer_range
         | 
| 97 | 
            +
                    self.initializer_factor = initializer_factor
         | 
| 98 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 99 | 
            +
                    self.layer_norm_eps = layer_norm_eps
         | 
| 100 | 
            +
                    self.hidden_act = hidden_act
         | 
| 101 | 
            +
                    self.norm_type = norm_type
         | 
| 102 | 
            +
                    self.qkv_bias = qkv_bias
         | 
| 103 | 
            +
                    self.qk_normalization = qk_normalization
         | 
| 104 | 
            +
                    self.use_flash_attn = use_flash_attn
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                @classmethod
         | 
| 107 | 
            +
                def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
         | 
| 108 | 
            +
                    config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    if 'vision_config' in config_dict:
         | 
| 111 | 
            +
                        config_dict = config_dict['vision_config']
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
         | 
| 114 | 
            +
                        logger.warning(
         | 
| 115 | 
            +
                            f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
         | 
| 116 | 
            +
                            f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
         | 
| 117 | 
            +
                        )
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    return cls.from_dict(config_dict, **kwargs)
         | 
    	
        configuration_internvl_chat.py
    ADDED
    
    | @@ -0,0 +1,99 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2023 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import copy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers import AutoConfig, LlamaConfig
         | 
| 10 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 11 | 
            +
            from transformers.utils import logging
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from .configuration_intern_vit import InternVisionConfig
         | 
| 14 | 
            +
            from .configuration_phi3 import Phi3Config
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            class InternVLChatConfig(PretrainedConfig):
         | 
| 20 | 
            +
                model_type = 'internvl_chat'
         | 
| 21 | 
            +
                is_composition = True
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                def __init__(
         | 
| 24 | 
            +
                        self,
         | 
| 25 | 
            +
                        vision_config=None,
         | 
| 26 | 
            +
                        llm_config=None,
         | 
| 27 | 
            +
                        use_backbone_lora=0,
         | 
| 28 | 
            +
                        use_llm_lora=0,
         | 
| 29 | 
            +
                        pad2square=False,
         | 
| 30 | 
            +
                        select_layer=-1,
         | 
| 31 | 
            +
                        force_image_size=None,
         | 
| 32 | 
            +
                        downsample_ratio=0.5,
         | 
| 33 | 
            +
                        template=None,
         | 
| 34 | 
            +
                        dynamic_image_size=False,
         | 
| 35 | 
            +
                        use_thumbnail=False,
         | 
| 36 | 
            +
                        ps_version='v1',
         | 
| 37 | 
            +
                        min_dynamic_patch=1,
         | 
| 38 | 
            +
                        max_dynamic_patch=6,
         | 
| 39 | 
            +
                        **kwargs):
         | 
| 40 | 
            +
                    super().__init__(**kwargs)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                    if vision_config is None:
         | 
| 43 | 
            +
                        vision_config = {}
         | 
| 44 | 
            +
                        logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    if llm_config is None:
         | 
| 47 | 
            +
                        llm_config = {}
         | 
| 48 | 
            +
                        logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    self.vision_config = InternVisionConfig(**vision_config)
         | 
| 51 | 
            +
                    if llm_config['architectures'][0] == 'LlamaForCausalLM':
         | 
| 52 | 
            +
                        self.llm_config = LlamaConfig(**llm_config)
         | 
| 53 | 
            +
                    elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
         | 
| 54 | 
            +
                        self.llm_config = Phi3Config(**llm_config)
         | 
| 55 | 
            +
                    else:
         | 
| 56 | 
            +
                        raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
         | 
| 57 | 
            +
                    self.use_backbone_lora = use_backbone_lora
         | 
| 58 | 
            +
                    self.use_llm_lora = use_llm_lora
         | 
| 59 | 
            +
                    self.pad2square = pad2square
         | 
| 60 | 
            +
                    self.select_layer = select_layer
         | 
| 61 | 
            +
                    self.force_image_size = force_image_size
         | 
| 62 | 
            +
                    self.downsample_ratio = downsample_ratio
         | 
| 63 | 
            +
                    self.template = template
         | 
| 64 | 
            +
                    self.dynamic_image_size = dynamic_image_size
         | 
| 65 | 
            +
                    self.use_thumbnail = use_thumbnail
         | 
| 66 | 
            +
                    self.ps_version = ps_version  # pixel shuffle version
         | 
| 67 | 
            +
                    self.min_dynamic_patch = min_dynamic_patch
         | 
| 68 | 
            +
                    self.max_dynamic_patch = max_dynamic_patch
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    logger.info(f'vision_select_layer: {self.select_layer}')
         | 
| 71 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 72 | 
            +
                    logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
         | 
| 73 | 
            +
                    logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def to_dict(self):
         | 
| 76 | 
            +
                    """
         | 
| 77 | 
            +
                    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    Returns:
         | 
| 80 | 
            +
                        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
         | 
| 81 | 
            +
                    """
         | 
| 82 | 
            +
                    output = copy.deepcopy(self.__dict__)
         | 
| 83 | 
            +
                    output['vision_config'] = self.vision_config.to_dict()
         | 
| 84 | 
            +
                    output['llm_config'] = self.llm_config.to_dict()
         | 
| 85 | 
            +
                    output['model_type'] = self.__class__.model_type
         | 
| 86 | 
            +
                    output['use_backbone_lora'] = self.use_backbone_lora
         | 
| 87 | 
            +
                    output['use_llm_lora'] = self.use_llm_lora
         | 
| 88 | 
            +
                    output['pad2square'] = self.pad2square
         | 
| 89 | 
            +
                    output['select_layer'] = self.select_layer
         | 
| 90 | 
            +
                    output['force_image_size'] = self.force_image_size
         | 
| 91 | 
            +
                    output['downsample_ratio'] = self.downsample_ratio
         | 
| 92 | 
            +
                    output['template'] = self.template
         | 
| 93 | 
            +
                    output['dynamic_image_size'] = self.dynamic_image_size
         | 
| 94 | 
            +
                    output['use_thumbnail'] = self.use_thumbnail
         | 
| 95 | 
            +
                    output['ps_version'] = self.ps_version
         | 
| 96 | 
            +
                    output['min_dynamic_patch'] = self.min_dynamic_patch
         | 
| 97 | 
            +
                    output['max_dynamic_patch'] = self.max_dynamic_patch
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    return output
         | 
    	
        configuration_phi3.py
    ADDED
    
    | @@ -0,0 +1,211 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License atd
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            """ Phi-3 model configuration"""
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 19 | 
            +
            from transformers.utils import logging
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
         | 
| 24 | 
            +
                'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
         | 
| 25 | 
            +
                'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
         | 
| 26 | 
            +
            }
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            class Phi3Config(PretrainedConfig):
         | 
| 30 | 
            +
                r"""
         | 
| 31 | 
            +
                This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
         | 
| 32 | 
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         | 
| 33 | 
            +
                defaults will yield a similar configuration to that of the
         | 
| 34 | 
            +
                [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 37 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                Args:
         | 
| 40 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32064):
         | 
| 41 | 
            +
                        Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
         | 
| 42 | 
            +
                        `inputs_ids` passed when calling [`Phi3Model`].
         | 
| 43 | 
            +
                    hidden_size (`int`, *optional*, defaults to 3072):
         | 
| 44 | 
            +
                        Dimension of the hidden representations.
         | 
| 45 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 8192):
         | 
| 46 | 
            +
                        Dimension of the MLP representations.
         | 
| 47 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 48 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 49 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 50 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 51 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 52 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 53 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 54 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 55 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 56 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 57 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 58 | 
            +
                        `num_attention_heads`.
         | 
| 59 | 
            +
                    resid_pdrop (`float`, *optional*, defaults to 0.0):
         | 
| 60 | 
            +
                        Dropout probability for mlp outputs.
         | 
| 61 | 
            +
                    embd_pdrop (`int`, *optional*, defaults to 0.0):
         | 
| 62 | 
            +
                        The dropout ratio for the embeddings.
         | 
| 63 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 64 | 
            +
                        The dropout ratio after computing the attention scores.
         | 
| 65 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 66 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 67 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 4096):
         | 
| 68 | 
            +
                        The maximum sequence length that this model might ever be used with.
         | 
| 69 | 
            +
                    original_max_position_embeddings (`int`, *optional*, defaults to 4096):
         | 
| 70 | 
            +
                        The maximum sequence length that this model was trained with. This is used to determine the size of the
         | 
| 71 | 
            +
                        original RoPE embeddings when using long scaling.
         | 
| 72 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 73 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 74 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
         | 
| 75 | 
            +
                        The epsilon value used for the RMSNorm.
         | 
| 76 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 77 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 78 | 
            +
                        relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
         | 
| 79 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 80 | 
            +
                        Whether to tie weight embeddings
         | 
| 81 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 82 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 83 | 
            +
                    rope_scaling (`dict`, *optional*):
         | 
| 84 | 
            +
                        The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
         | 
| 85 | 
            +
                        contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
         | 
| 86 | 
            +
                        the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
         | 
| 87 | 
            +
                        divided by the number of attention heads divided by 2.
         | 
| 88 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 89 | 
            +
                        The id of the "beginning-of-sequence" token.
         | 
| 90 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 32000):
         | 
| 91 | 
            +
                        The id of the "end-of-sequence" token.
         | 
| 92 | 
            +
                    pad_token_id (`int`, *optional*, defaults to 32000):
         | 
| 93 | 
            +
                        The id of the padding token.
         | 
| 94 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 95 | 
            +
                        Sliding window attention window size. If `None`, no sliding window is applied.
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                Example:
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                ```python
         | 
| 100 | 
            +
                >>> from transformers import Phi3Model, Phi3Config
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                >>> # Initializing a Phi-3 style configuration
         | 
| 103 | 
            +
                >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                >>> # Initializing a model from the configuration
         | 
| 106 | 
            +
                >>> model = Phi3Model(configuration)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                >>> # Accessing the model configuration
         | 
| 109 | 
            +
                >>> configuration = model.config
         | 
| 110 | 
            +
                ```"""
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                model_type = 'phi3'
         | 
| 113 | 
            +
                keys_to_ignore_at_inference = ['past_key_values']
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                def __init__(
         | 
| 116 | 
            +
                    self,
         | 
| 117 | 
            +
                    vocab_size=32064,
         | 
| 118 | 
            +
                    hidden_size=3072,
         | 
| 119 | 
            +
                    intermediate_size=8192,
         | 
| 120 | 
            +
                    num_hidden_layers=32,
         | 
| 121 | 
            +
                    num_attention_heads=32,
         | 
| 122 | 
            +
                    num_key_value_heads=None,
         | 
| 123 | 
            +
                    resid_pdrop=0.0,
         | 
| 124 | 
            +
                    embd_pdrop=0.0,
         | 
| 125 | 
            +
                    attention_dropout=0.0,
         | 
| 126 | 
            +
                    hidden_act='silu',
         | 
| 127 | 
            +
                    max_position_embeddings=4096,
         | 
| 128 | 
            +
                    original_max_position_embeddings=4096,
         | 
| 129 | 
            +
                    initializer_range=0.02,
         | 
| 130 | 
            +
                    rms_norm_eps=1e-5,
         | 
| 131 | 
            +
                    use_cache=True,
         | 
| 132 | 
            +
                    tie_word_embeddings=False,
         | 
| 133 | 
            +
                    rope_theta=10000.0,
         | 
| 134 | 
            +
                    rope_scaling=None,
         | 
| 135 | 
            +
                    bos_token_id=1,
         | 
| 136 | 
            +
                    eos_token_id=32000,
         | 
| 137 | 
            +
                    pad_token_id=32000,
         | 
| 138 | 
            +
                    sliding_window=None,
         | 
| 139 | 
            +
                    **kwargs,
         | 
| 140 | 
            +
                ):
         | 
| 141 | 
            +
                    self.vocab_size = vocab_size
         | 
| 142 | 
            +
                    self.hidden_size = hidden_size
         | 
| 143 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 144 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 145 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    if num_key_value_heads is None:
         | 
| 148 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 151 | 
            +
                    self.resid_pdrop = resid_pdrop
         | 
| 152 | 
            +
                    self.embd_pdrop = embd_pdrop
         | 
| 153 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 154 | 
            +
                    self.hidden_act = hidden_act
         | 
| 155 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 156 | 
            +
                    self.original_max_position_embeddings = original_max_position_embeddings
         | 
| 157 | 
            +
                    self.initializer_range = initializer_range
         | 
| 158 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 159 | 
            +
                    self.use_cache = use_cache
         | 
| 160 | 
            +
                    self.rope_theta = rope_theta
         | 
| 161 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 162 | 
            +
                    self._rope_scaling_validation()
         | 
| 163 | 
            +
                    self.sliding_window = sliding_window
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    super().__init__(
         | 
| 166 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 167 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 168 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 169 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 170 | 
            +
                        **kwargs,
         | 
| 171 | 
            +
                    )
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                def _rope_scaling_validation(self):
         | 
| 174 | 
            +
                    """
         | 
| 175 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 176 | 
            +
                    """
         | 
| 177 | 
            +
                    if self.rope_scaling is None:
         | 
| 178 | 
            +
                        return
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
         | 
| 181 | 
            +
                        raise ValueError(
         | 
| 182 | 
            +
                            '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
         | 
| 183 | 
            +
                            f'got {self.rope_scaling}'
         | 
| 184 | 
            +
                        )
         | 
| 185 | 
            +
                    rope_scaling_type = self.rope_scaling.get('type', None)
         | 
| 186 | 
            +
                    rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
         | 
| 187 | 
            +
                    rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
         | 
| 188 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
         | 
| 189 | 
            +
                        raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
         | 
| 190 | 
            +
                    if not (
         | 
| 191 | 
            +
                        isinstance(rope_scaling_short_factor, list)
         | 
| 192 | 
            +
                        and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
         | 
| 193 | 
            +
                    ):
         | 
| 194 | 
            +
                        raise ValueError(
         | 
| 195 | 
            +
                            f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
         | 
| 196 | 
            +
                        )
         | 
| 197 | 
            +
                    if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
         | 
| 198 | 
            +
                        raise ValueError(
         | 
| 199 | 
            +
                            f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
         | 
| 200 | 
            +
                        )
         | 
| 201 | 
            +
                    if not (
         | 
| 202 | 
            +
                        isinstance(rope_scaling_long_factor, list)
         | 
| 203 | 
            +
                        and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
         | 
| 204 | 
            +
                    ):
         | 
| 205 | 
            +
                        raise ValueError(
         | 
| 206 | 
            +
                            f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
         | 
| 207 | 
            +
                        )
         | 
| 208 | 
            +
                    if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
         | 
| 209 | 
            +
                        raise ValueError(
         | 
| 210 | 
            +
                            f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
         | 
| 211 | 
            +
                        )
         | 
    	
        conversation.py
    ADDED
    
    | @@ -0,0 +1,383 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Conversation prompt templates.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            We kindly request that you import fastchat instead of copying this file if you wish to use it.
         | 
| 5 | 
            +
            If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
         | 
| 6 | 
            +
            """
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import dataclasses
         | 
| 9 | 
            +
            from enum import IntEnum, auto
         | 
| 10 | 
            +
            from typing import Any, Dict, List, Tuple, Union
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            class SeparatorStyle(IntEnum):
         | 
| 14 | 
            +
                """Separator styles."""
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                ADD_COLON_SINGLE = auto()
         | 
| 17 | 
            +
                ADD_COLON_TWO = auto()
         | 
| 18 | 
            +
                ADD_COLON_SPACE_SINGLE = auto()
         | 
| 19 | 
            +
                NO_COLON_SINGLE = auto()
         | 
| 20 | 
            +
                NO_COLON_TWO = auto()
         | 
| 21 | 
            +
                ADD_NEW_LINE_SINGLE = auto()
         | 
| 22 | 
            +
                LLAMA2 = auto()
         | 
| 23 | 
            +
                CHATGLM = auto()
         | 
| 24 | 
            +
                CHATML = auto()
         | 
| 25 | 
            +
                CHATINTERN = auto()
         | 
| 26 | 
            +
                DOLLY = auto()
         | 
| 27 | 
            +
                RWKV = auto()
         | 
| 28 | 
            +
                PHOENIX = auto()
         | 
| 29 | 
            +
                ROBIN = auto()
         | 
| 30 | 
            +
                FALCON_CHAT = auto()
         | 
| 31 | 
            +
                CHATGLM3 = auto()
         | 
| 32 | 
            +
                INTERNVL_ZH = auto()
         | 
| 33 | 
            +
                MPT = auto()
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            @dataclasses.dataclass
         | 
| 37 | 
            +
            class Conversation:
         | 
| 38 | 
            +
                """A class that manages prompt templates and keeps all conversation history."""
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                # The name of this template
         | 
| 41 | 
            +
                name: str
         | 
| 42 | 
            +
                # The template of the system prompt
         | 
| 43 | 
            +
                system_template: str = '{system_message}'
         | 
| 44 | 
            +
                # The system message
         | 
| 45 | 
            +
                system_message: str = ''
         | 
| 46 | 
            +
                # The names of two roles
         | 
| 47 | 
            +
                roles: Tuple[str] = ('USER', 'ASSISTANT')
         | 
| 48 | 
            +
                # All messages. Each item is (role, message).
         | 
| 49 | 
            +
                messages: List[List[str]] = ()
         | 
| 50 | 
            +
                # The number of few shot examples
         | 
| 51 | 
            +
                offset: int = 0
         | 
| 52 | 
            +
                # The separator style and configurations
         | 
| 53 | 
            +
                sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
         | 
| 54 | 
            +
                sep: str = '\n'
         | 
| 55 | 
            +
                sep2: str = None
         | 
| 56 | 
            +
                # Stop criteria (the default one is EOS token)
         | 
| 57 | 
            +
                stop_str: Union[str, List[str]] = None
         | 
| 58 | 
            +
                # Stops generation if meeting any token in this list
         | 
| 59 | 
            +
                stop_token_ids: List[int] = None
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def get_prompt(self) -> str:
         | 
| 62 | 
            +
                    """Get the prompt for generation."""
         | 
| 63 | 
            +
                    system_prompt = self.system_template.format(system_message=self.system_message)
         | 
| 64 | 
            +
                    if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
         | 
| 65 | 
            +
                        ret = system_prompt + self.sep
         | 
| 66 | 
            +
                        for role, message in self.messages:
         | 
| 67 | 
            +
                            if message:
         | 
| 68 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 69 | 
            +
                            else:
         | 
| 70 | 
            +
                                ret += role + ':'
         | 
| 71 | 
            +
                        return ret
         | 
| 72 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
         | 
| 73 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 74 | 
            +
                        ret = system_prompt + seps[0]
         | 
| 75 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 76 | 
            +
                            if message:
         | 
| 77 | 
            +
                                ret += role + ': ' + message + seps[i % 2]
         | 
| 78 | 
            +
                            else:
         | 
| 79 | 
            +
                                ret += role + ':'
         | 
| 80 | 
            +
                        return ret
         | 
| 81 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
         | 
| 82 | 
            +
                        ret = system_prompt + self.sep
         | 
| 83 | 
            +
                        for role, message in self.messages:
         | 
| 84 | 
            +
                            if message:
         | 
| 85 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 86 | 
            +
                            else:
         | 
| 87 | 
            +
                                ret += role + ': '  # must be end with a space
         | 
| 88 | 
            +
                        return ret
         | 
| 89 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
         | 
| 90 | 
            +
                        ret = '' if system_prompt == '' else system_prompt + self.sep
         | 
| 91 | 
            +
                        for role, message in self.messages:
         | 
| 92 | 
            +
                            if message:
         | 
| 93 | 
            +
                                ret += role + '\n' + message + self.sep
         | 
| 94 | 
            +
                            else:
         | 
| 95 | 
            +
                                ret += role + '\n'
         | 
| 96 | 
            +
                        return ret
         | 
| 97 | 
            +
                    elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
         | 
| 98 | 
            +
                        ret = system_prompt
         | 
| 99 | 
            +
                        for role, message in self.messages:
         | 
| 100 | 
            +
                            if message:
         | 
| 101 | 
            +
                                ret += role + message + self.sep
         | 
| 102 | 
            +
                            else:
         | 
| 103 | 
            +
                                ret += role
         | 
| 104 | 
            +
                        return ret
         | 
| 105 | 
            +
                    elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
         | 
| 106 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 107 | 
            +
                        ret = system_prompt
         | 
| 108 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 109 | 
            +
                            if message:
         | 
| 110 | 
            +
                                ret += role + message + seps[i % 2]
         | 
| 111 | 
            +
                            else:
         | 
| 112 | 
            +
                                ret += role
         | 
| 113 | 
            +
                        return ret
         | 
| 114 | 
            +
                    elif self.sep_style == SeparatorStyle.RWKV:
         | 
| 115 | 
            +
                        ret = system_prompt
         | 
| 116 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 117 | 
            +
                            if message:
         | 
| 118 | 
            +
                                ret += (
         | 
| 119 | 
            +
                                    role
         | 
| 120 | 
            +
                                    + ': '
         | 
| 121 | 
            +
                                    + message.replace('\r\n', '\n').replace('\n\n', '\n')
         | 
| 122 | 
            +
                                )
         | 
| 123 | 
            +
                                ret += '\n\n'
         | 
| 124 | 
            +
                            else:
         | 
| 125 | 
            +
                                ret += role + ':'
         | 
| 126 | 
            +
                        return ret
         | 
| 127 | 
            +
                    elif self.sep_style == SeparatorStyle.LLAMA2:
         | 
| 128 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 129 | 
            +
                        if self.system_message:
         | 
| 130 | 
            +
                            ret = system_prompt
         | 
| 131 | 
            +
                        else:
         | 
| 132 | 
            +
                            ret = '[INST] '
         | 
| 133 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 134 | 
            +
                            tag = self.roles[i % 2]
         | 
| 135 | 
            +
                            if message:
         | 
| 136 | 
            +
                                if i == 0:
         | 
| 137 | 
            +
                                    ret += message + ' '
         | 
| 138 | 
            +
                                else:
         | 
| 139 | 
            +
                                    ret += tag + ' ' + message + seps[i % 2]
         | 
| 140 | 
            +
                            else:
         | 
| 141 | 
            +
                                ret += tag
         | 
| 142 | 
            +
                        return ret
         | 
| 143 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATGLM:
         | 
| 144 | 
            +
                        # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
         | 
| 145 | 
            +
                        # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
         | 
| 146 | 
            +
                        round_add_n = 1 if self.name == 'chatglm2' else 0
         | 
| 147 | 
            +
                        if system_prompt:
         | 
| 148 | 
            +
                            ret = system_prompt + self.sep
         | 
| 149 | 
            +
                        else:
         | 
| 150 | 
            +
                            ret = ''
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 153 | 
            +
                            if i % 2 == 0:
         | 
| 154 | 
            +
                                ret += f'[Round {i//2 + round_add_n}]{self.sep}'
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                            if message:
         | 
| 157 | 
            +
                                ret += f'{role}:{message}{self.sep}'
         | 
| 158 | 
            +
                            else:
         | 
| 159 | 
            +
                                ret += f'{role}:'
         | 
| 160 | 
            +
                        return ret
         | 
| 161 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATML:
         | 
| 162 | 
            +
                        ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
         | 
| 163 | 
            +
                        for role, message in self.messages:
         | 
| 164 | 
            +
                            if message:
         | 
| 165 | 
            +
                                ret += role + '\n' + message + self.sep + '\n'
         | 
| 166 | 
            +
                            else:
         | 
| 167 | 
            +
                                ret += role + '\n'
         | 
| 168 | 
            +
                        return ret
         | 
| 169 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATGLM3:
         | 
| 170 | 
            +
                        ret = ''
         | 
| 171 | 
            +
                        if self.system_message:
         | 
| 172 | 
            +
                            ret += system_prompt
         | 
| 173 | 
            +
                        for role, message in self.messages:
         | 
| 174 | 
            +
                            if message:
         | 
| 175 | 
            +
                                ret += role + '\n' + ' ' + message
         | 
| 176 | 
            +
                            else:
         | 
| 177 | 
            +
                                ret += role
         | 
| 178 | 
            +
                        return ret
         | 
| 179 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATINTERN:
         | 
| 180 | 
            +
                        # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
         | 
| 181 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 182 | 
            +
                        ret = system_prompt
         | 
| 183 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 184 | 
            +
                            # if i % 2 == 0:
         | 
| 185 | 
            +
                            #     ret += "<s>"
         | 
| 186 | 
            +
                            if message:
         | 
| 187 | 
            +
                                ret += role + ':' + message + seps[i % 2] + '\n'
         | 
| 188 | 
            +
                            else:
         | 
| 189 | 
            +
                                ret += role + ':'
         | 
| 190 | 
            +
                        return ret
         | 
| 191 | 
            +
                    elif self.sep_style == SeparatorStyle.DOLLY:
         | 
| 192 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 193 | 
            +
                        ret = system_prompt
         | 
| 194 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 195 | 
            +
                            if message:
         | 
| 196 | 
            +
                                ret += role + ':\n' + message + seps[i % 2]
         | 
| 197 | 
            +
                                if i % 2 == 1:
         | 
| 198 | 
            +
                                    ret += '\n\n'
         | 
| 199 | 
            +
                            else:
         | 
| 200 | 
            +
                                ret += role + ':\n'
         | 
| 201 | 
            +
                        return ret
         | 
| 202 | 
            +
                    elif self.sep_style == SeparatorStyle.PHOENIX:
         | 
| 203 | 
            +
                        ret = system_prompt
         | 
| 204 | 
            +
                        for role, message in self.messages:
         | 
| 205 | 
            +
                            if message:
         | 
| 206 | 
            +
                                ret += role + ': ' + '<s>' + message + '</s>'
         | 
| 207 | 
            +
                            else:
         | 
| 208 | 
            +
                                ret += role + ': ' + '<s>'
         | 
| 209 | 
            +
                        return ret
         | 
| 210 | 
            +
                    elif self.sep_style == SeparatorStyle.ROBIN:
         | 
| 211 | 
            +
                        ret = system_prompt + self.sep
         | 
| 212 | 
            +
                        for role, message in self.messages:
         | 
| 213 | 
            +
                            if message:
         | 
| 214 | 
            +
                                ret += role + ':\n' + message + self.sep
         | 
| 215 | 
            +
                            else:
         | 
| 216 | 
            +
                                ret += role + ':\n'
         | 
| 217 | 
            +
                        return ret
         | 
| 218 | 
            +
                    elif self.sep_style == SeparatorStyle.FALCON_CHAT:
         | 
| 219 | 
            +
                        ret = ''
         | 
| 220 | 
            +
                        if self.system_message:
         | 
| 221 | 
            +
                            ret += system_prompt + self.sep
         | 
| 222 | 
            +
                        for role, message in self.messages:
         | 
| 223 | 
            +
                            if message:
         | 
| 224 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 225 | 
            +
                            else:
         | 
| 226 | 
            +
                                ret += role + ':'
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                        return ret
         | 
| 229 | 
            +
                    elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
         | 
| 230 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 231 | 
            +
                        ret = self.system_message + seps[0]
         | 
| 232 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 233 | 
            +
                            if message:
         | 
| 234 | 
            +
                                ret += role + ': ' + message + seps[i % 2]
         | 
| 235 | 
            +
                            else:
         | 
| 236 | 
            +
                                ret += role + ':'
         | 
| 237 | 
            +
                        return ret
         | 
| 238 | 
            +
                    elif self.sep_style == SeparatorStyle.MPT:
         | 
| 239 | 
            +
                        ret = system_prompt + self.sep
         | 
| 240 | 
            +
                        for role, message in self.messages:
         | 
| 241 | 
            +
                            if message:
         | 
| 242 | 
            +
                                if type(message) is tuple:
         | 
| 243 | 
            +
                                    message, _, _ = message
         | 
| 244 | 
            +
                                ret += role + message + self.sep
         | 
| 245 | 
            +
                            else:
         | 
| 246 | 
            +
                                ret += role
         | 
| 247 | 
            +
                        return ret
         | 
| 248 | 
            +
                    else:
         | 
| 249 | 
            +
                        raise ValueError(f'Invalid style: {self.sep_style}')
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def set_system_message(self, system_message: str):
         | 
| 252 | 
            +
                    """Set the system message."""
         | 
| 253 | 
            +
                    self.system_message = system_message
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                def append_message(self, role: str, message: str):
         | 
| 256 | 
            +
                    """Append a new message."""
         | 
| 257 | 
            +
                    self.messages.append([role, message])
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def update_last_message(self, message: str):
         | 
| 260 | 
            +
                    """Update the last output.
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    The last message is typically set to be None when constructing the prompt,
         | 
| 263 | 
            +
                    so we need to update it in-place after getting the response from a model.
         | 
| 264 | 
            +
                    """
         | 
| 265 | 
            +
                    self.messages[-1][1] = message
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def to_gradio_chatbot(self):
         | 
| 268 | 
            +
                    """Convert the conversation to gradio chatbot format."""
         | 
| 269 | 
            +
                    ret = []
         | 
| 270 | 
            +
                    for i, (role, msg) in enumerate(self.messages[self.offset :]):
         | 
| 271 | 
            +
                        if i % 2 == 0:
         | 
| 272 | 
            +
                            ret.append([msg, None])
         | 
| 273 | 
            +
                        else:
         | 
| 274 | 
            +
                            ret[-1][-1] = msg
         | 
| 275 | 
            +
                    return ret
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def to_openai_api_messages(self):
         | 
| 278 | 
            +
                    """Convert the conversation to OpenAI chat completion format."""
         | 
| 279 | 
            +
                    ret = [{'role': 'system', 'content': self.system_message}]
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    for i, (_, msg) in enumerate(self.messages[self.offset :]):
         | 
| 282 | 
            +
                        if i % 2 == 0:
         | 
| 283 | 
            +
                            ret.append({'role': 'user', 'content': msg})
         | 
| 284 | 
            +
                        else:
         | 
| 285 | 
            +
                            if msg is not None:
         | 
| 286 | 
            +
                                ret.append({'role': 'assistant', 'content': msg})
         | 
| 287 | 
            +
                    return ret
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def copy(self):
         | 
| 290 | 
            +
                    return Conversation(
         | 
| 291 | 
            +
                        name=self.name,
         | 
| 292 | 
            +
                        system_template=self.system_template,
         | 
| 293 | 
            +
                        system_message=self.system_message,
         | 
| 294 | 
            +
                        roles=self.roles,
         | 
| 295 | 
            +
                        messages=[[x, y] for x, y in self.messages],
         | 
| 296 | 
            +
                        offset=self.offset,
         | 
| 297 | 
            +
                        sep_style=self.sep_style,
         | 
| 298 | 
            +
                        sep=self.sep,
         | 
| 299 | 
            +
                        sep2=self.sep2,
         | 
| 300 | 
            +
                        stop_str=self.stop_str,
         | 
| 301 | 
            +
                        stop_token_ids=self.stop_token_ids,
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                def dict(self):
         | 
| 305 | 
            +
                    return {
         | 
| 306 | 
            +
                        'template_name': self.name,
         | 
| 307 | 
            +
                        'system_message': self.system_message,
         | 
| 308 | 
            +
                        'roles': self.roles,
         | 
| 309 | 
            +
                        'messages': self.messages,
         | 
| 310 | 
            +
                        'offset': self.offset,
         | 
| 311 | 
            +
                    }
         | 
| 312 | 
            +
             | 
| 313 | 
            +
             | 
| 314 | 
            +
            # A global registry for all conversation templates
         | 
| 315 | 
            +
            conv_templates: Dict[str, Conversation] = {}
         | 
| 316 | 
            +
             | 
| 317 | 
            +
             | 
| 318 | 
            +
            def register_conv_template(template: Conversation, override: bool = False):
         | 
| 319 | 
            +
                """Register a new conversation template."""
         | 
| 320 | 
            +
                if not override:
         | 
| 321 | 
            +
                    assert (
         | 
| 322 | 
            +
                        template.name not in conv_templates
         | 
| 323 | 
            +
                    ), f'{template.name} has been registered.'
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                conv_templates[template.name] = template
         | 
| 326 | 
            +
             | 
| 327 | 
            +
             | 
| 328 | 
            +
            def get_conv_template(name: str) -> Conversation:
         | 
| 329 | 
            +
                """Get a conversation template."""
         | 
| 330 | 
            +
                return conv_templates[name].copy()
         | 
| 331 | 
            +
             | 
| 332 | 
            +
             | 
| 333 | 
            +
            register_conv_template(
         | 
| 334 | 
            +
                Conversation(
         | 
| 335 | 
            +
                    name='Hermes-2',
         | 
| 336 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 337 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 338 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 339 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 340 | 
            +
                    sep='<|im_end|>',
         | 
| 341 | 
            +
                    stop_token_ids=[
         | 
| 342 | 
            +
                        2,
         | 
| 343 | 
            +
                        6,
         | 
| 344 | 
            +
                        7,
         | 
| 345 | 
            +
                        8,
         | 
| 346 | 
            +
                    ],  # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
         | 
| 347 | 
            +
                    stop_str='<|endoftext|>',
         | 
| 348 | 
            +
                )
         | 
| 349 | 
            +
            )
         | 
| 350 | 
            +
             | 
| 351 | 
            +
             | 
| 352 | 
            +
            register_conv_template(
         | 
| 353 | 
            +
                Conversation(
         | 
| 354 | 
            +
                    name='internlm2-chat',
         | 
| 355 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 356 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 357 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 358 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 359 | 
            +
                    sep='<|im_end|>',
         | 
| 360 | 
            +
                    stop_token_ids=[
         | 
| 361 | 
            +
                        2,
         | 
| 362 | 
            +
                        92543,
         | 
| 363 | 
            +
                        92542
         | 
| 364 | 
            +
                    ]
         | 
| 365 | 
            +
                )
         | 
| 366 | 
            +
            )
         | 
| 367 | 
            +
             | 
| 368 | 
            +
             | 
| 369 | 
            +
            register_conv_template(
         | 
| 370 | 
            +
                Conversation(
         | 
| 371 | 
            +
                    name='phi3-chat',
         | 
| 372 | 
            +
                    system_template='<|system|>\n{system_message}',
         | 
| 373 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 374 | 
            +
                    roles=('<|user|>\n', '<|assistant|>\n'),
         | 
| 375 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 376 | 
            +
                    sep='<|end|>',
         | 
| 377 | 
            +
                    stop_token_ids=[
         | 
| 378 | 
            +
                        2,
         | 
| 379 | 
            +
                        32000,
         | 
| 380 | 
            +
                        32007
         | 
| 381 | 
            +
                    ]
         | 
| 382 | 
            +
                )
         | 
| 383 | 
            +
            )
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "transformers_version": "4.37.2"
         | 
| 4 | 
            +
            }
         | 
    	
        model-00001-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2d49faea2fab060381af9c6902a1ae9593797cffdc6317394b62b6bc97a80f35
         | 
| 3 | 
            +
            size 4957392176
         | 
    	
        model-00002-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:fe85c0ab7ff42c3760870e1168f4de677f8177cbf4b43abde850e1d7ad16348a
         | 
| 3 | 
            +
            size 3336385864
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,548 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 8293711872
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
         | 
| 7 | 
            +
                "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
         | 
| 8 | 
            +
                "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 9 | 
            +
                "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 10 | 
            +
                "language_model.model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 11 | 
            +
                "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 12 | 
            +
                "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 13 | 
            +
                "language_model.model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 14 | 
            +
                "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 15 | 
            +
                "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 16 | 
            +
                "language_model.model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 17 | 
            +
                "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 18 | 
            +
                "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 19 | 
            +
                "language_model.model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 20 | 
            +
                "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 21 | 
            +
                "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 22 | 
            +
                "language_model.model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 23 | 
            +
                "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 24 | 
            +
                "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 25 | 
            +
                "language_model.model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 26 | 
            +
                "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 27 | 
            +
                "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 28 | 
            +
                "language_model.model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 29 | 
            +
                "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 30 | 
            +
                "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 31 | 
            +
                "language_model.model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 32 | 
            +
                "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 33 | 
            +
                "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 34 | 
            +
                "language_model.model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 35 | 
            +
                "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 36 | 
            +
                "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 37 | 
            +
                "language_model.model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 38 | 
            +
                "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 39 | 
            +
                "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 40 | 
            +
                "language_model.model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 41 | 
            +
                "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 42 | 
            +
                "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 43 | 
            +
                "language_model.model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 44 | 
            +
                "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 45 | 
            +
                "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 46 | 
            +
                "language_model.model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 47 | 
            +
                "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 48 | 
            +
                "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 49 | 
            +
                "language_model.model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 50 | 
            +
                "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 51 | 
            +
                "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 52 | 
            +
                "language_model.model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 53 | 
            +
                "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 54 | 
            +
                "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 55 | 
            +
                "language_model.model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 56 | 
            +
                "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 57 | 
            +
                "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 58 | 
            +
                "language_model.model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 59 | 
            +
                "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 60 | 
            +
                "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 61 | 
            +
                "language_model.model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 62 | 
            +
                "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 63 | 
            +
                "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 64 | 
            +
                "language_model.model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 65 | 
            +
                "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 66 | 
            +
                "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 67 | 
            +
                "language_model.model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 68 | 
            +
                "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 69 | 
            +
                "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 70 | 
            +
                "language_model.model.layers.18.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 71 | 
            +
                "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 72 | 
            +
                "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 73 | 
            +
                "language_model.model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 74 | 
            +
                "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 75 | 
            +
                "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 76 | 
            +
                "language_model.model.layers.19.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 77 | 
            +
                "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 78 | 
            +
                "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 79 | 
            +
                "language_model.model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 80 | 
            +
                "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 81 | 
            +
                "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 82 | 
            +
                "language_model.model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 83 | 
            +
                "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 84 | 
            +
                "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 85 | 
            +
                "language_model.model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 86 | 
            +
                "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 87 | 
            +
                "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 88 | 
            +
                "language_model.model.layers.20.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 89 | 
            +
                "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 90 | 
            +
                "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 91 | 
            +
                "language_model.model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 92 | 
            +
                "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 93 | 
            +
                "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 94 | 
            +
                "language_model.model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 95 | 
            +
                "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 96 | 
            +
                "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 97 | 
            +
                "language_model.model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 98 | 
            +
                "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 99 | 
            +
                "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 100 | 
            +
                "language_model.model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 101 | 
            +
                "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 102 | 
            +
                "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 103 | 
            +
                "language_model.model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 104 | 
            +
                "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 105 | 
            +
                "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 106 | 
            +
                "language_model.model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 107 | 
            +
                "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 108 | 
            +
                "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 109 | 
            +
                "language_model.model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 110 | 
            +
                "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 111 | 
            +
                "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 112 | 
            +
                "language_model.model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 113 | 
            +
                "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 114 | 
            +
                "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 115 | 
            +
                "language_model.model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 116 | 
            +
                "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 117 | 
            +
                "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 118 | 
            +
                "language_model.model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 119 | 
            +
                "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 120 | 
            +
                "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 121 | 
            +
                "language_model.model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 122 | 
            +
                "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 123 | 
            +
                "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 124 | 
            +
                "language_model.model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 125 | 
            +
                "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 126 | 
            +
                "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 127 | 
            +
                "language_model.model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 128 | 
            +
                "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 129 | 
            +
                "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 130 | 
            +
                "language_model.model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 131 | 
            +
                "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 132 | 
            +
                "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 133 | 
            +
                "language_model.model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 134 | 
            +
                "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 135 | 
            +
                "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 136 | 
            +
                "language_model.model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 137 | 
            +
                "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 138 | 
            +
                "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 139 | 
            +
                "language_model.model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 140 | 
            +
                "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 141 | 
            +
                "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 142 | 
            +
                "language_model.model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 143 | 
            +
                "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 144 | 
            +
                "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 145 | 
            +
                "language_model.model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 146 | 
            +
                "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 147 | 
            +
                "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 148 | 
            +
                "language_model.model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 149 | 
            +
                "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 150 | 
            +
                "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 151 | 
            +
                "language_model.model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 152 | 
            +
                "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 153 | 
            +
                "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 154 | 
            +
                "language_model.model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 155 | 
            +
                "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 156 | 
            +
                "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 157 | 
            +
                "language_model.model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 158 | 
            +
                "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 159 | 
            +
                "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 160 | 
            +
                "language_model.model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 161 | 
            +
                "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 162 | 
            +
                "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 163 | 
            +
                "language_model.model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 164 | 
            +
                "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 165 | 
            +
                "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 166 | 
            +
                "language_model.model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 167 | 
            +
                "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 168 | 
            +
                "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 169 | 
            +
                "language_model.model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 170 | 
            +
                "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 171 | 
            +
                "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 172 | 
            +
                "language_model.model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 173 | 
            +
                "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 174 | 
            +
                "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 175 | 
            +
                "language_model.model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 176 | 
            +
                "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 177 | 
            +
                "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 178 | 
            +
                "language_model.model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 179 | 
            +
                "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 180 | 
            +
                "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 181 | 
            +
                "language_model.model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 182 | 
            +
                "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 183 | 
            +
                "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 184 | 
            +
                "language_model.model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 185 | 
            +
                "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 186 | 
            +
                "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 187 | 
            +
                "language_model.model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 188 | 
            +
                "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 189 | 
            +
                "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 190 | 
            +
                "language_model.model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 191 | 
            +
                "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 192 | 
            +
                "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 193 | 
            +
                "language_model.model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 194 | 
            +
                "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 195 | 
            +
                "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 196 | 
            +
                "language_model.model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 197 | 
            +
                "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 198 | 
            +
                "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 199 | 
            +
                "language_model.model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 200 | 
            +
                "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
         | 
| 201 | 
            +
                "mlp1.0.bias": "model-00002-of-00002.safetensors",
         | 
| 202 | 
            +
                "mlp1.0.weight": "model-00002-of-00002.safetensors",
         | 
| 203 | 
            +
                "mlp1.1.bias": "model-00002-of-00002.safetensors",
         | 
| 204 | 
            +
                "mlp1.1.weight": "model-00002-of-00002.safetensors",
         | 
| 205 | 
            +
                "mlp1.3.bias": "model-00002-of-00002.safetensors",
         | 
| 206 | 
            +
                "mlp1.3.weight": "model-00002-of-00002.safetensors",
         | 
| 207 | 
            +
                "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
         | 
| 208 | 
            +
                "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
         | 
| 209 | 
            +
                "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
         | 
| 210 | 
            +
                "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
         | 
| 211 | 
            +
                "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 212 | 
            +
                "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 213 | 
            +
                "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 214 | 
            +
                "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 215 | 
            +
                "vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
         | 
| 216 | 
            +
                "vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
         | 
| 217 | 
            +
                "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 218 | 
            +
                "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 219 | 
            +
                "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 220 | 
            +
                "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 221 | 
            +
                "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 222 | 
            +
                "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 223 | 
            +
                "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 224 | 
            +
                "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 225 | 
            +
                "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 226 | 
            +
                "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 227 | 
            +
                "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 228 | 
            +
                "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 229 | 
            +
                "vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
         | 
| 230 | 
            +
                "vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
         | 
| 231 | 
            +
                "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 232 | 
            +
                "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 233 | 
            +
                "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 234 | 
            +
                "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 235 | 
            +
                "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 236 | 
            +
                "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 237 | 
            +
                "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 238 | 
            +
                "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 239 | 
            +
                "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 240 | 
            +
                "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 241 | 
            +
                "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 242 | 
            +
                "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 243 | 
            +
                "vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
         | 
| 244 | 
            +
                "vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
         | 
| 245 | 
            +
                "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 246 | 
            +
                "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 247 | 
            +
                "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 248 | 
            +
                "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 249 | 
            +
                "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 250 | 
            +
                "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 251 | 
            +
                "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 252 | 
            +
                "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 253 | 
            +
                "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 254 | 
            +
                "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 255 | 
            +
                "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 256 | 
            +
                "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 257 | 
            +
                "vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
         | 
| 258 | 
            +
                "vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
         | 
| 259 | 
            +
                "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 260 | 
            +
                "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 261 | 
            +
                "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 262 | 
            +
                "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 263 | 
            +
                "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 264 | 
            +
                "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 265 | 
            +
                "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 266 | 
            +
                "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 267 | 
            +
                "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 268 | 
            +
                "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 269 | 
            +
                "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 270 | 
            +
                "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 271 | 
            +
                "vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
         | 
| 272 | 
            +
                "vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
         | 
| 273 | 
            +
                "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 274 | 
            +
                "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 275 | 
            +
                "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 276 | 
            +
                "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 277 | 
            +
                "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 278 | 
            +
                "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 279 | 
            +
                "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 280 | 
            +
                "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 281 | 
            +
                "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 282 | 
            +
                "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 283 | 
            +
                "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 284 | 
            +
                "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 285 | 
            +
                "vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
         | 
| 286 | 
            +
                "vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
         | 
| 287 | 
            +
                "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 288 | 
            +
                "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 289 | 
            +
                "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 290 | 
            +
                "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 291 | 
            +
                "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 292 | 
            +
                "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 293 | 
            +
                "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 294 | 
            +
                "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 295 | 
            +
                "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 296 | 
            +
                "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 297 | 
            +
                "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 298 | 
            +
                "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 299 | 
            +
                "vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
         | 
| 300 | 
            +
                "vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
         | 
| 301 | 
            +
                "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 302 | 
            +
                "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 303 | 
            +
                "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 304 | 
            +
                "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 305 | 
            +
                "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 306 | 
            +
                "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 307 | 
            +
                "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 308 | 
            +
                "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 309 | 
            +
                "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 310 | 
            +
                "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 311 | 
            +
                "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 312 | 
            +
                "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 313 | 
            +
                "vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
         | 
| 314 | 
            +
                "vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
         | 
| 315 | 
            +
                "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 316 | 
            +
                "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 317 | 
            +
                "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 318 | 
            +
                "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 319 | 
            +
                "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 320 | 
            +
                "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 321 | 
            +
                "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 322 | 
            +
                "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 323 | 
            +
                "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 324 | 
            +
                "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 325 | 
            +
                "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 326 | 
            +
                "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 327 | 
            +
                "vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
         | 
| 328 | 
            +
                "vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
         | 
| 329 | 
            +
                "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 330 | 
            +
                "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 331 | 
            +
                "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 332 | 
            +
                "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 333 | 
            +
                "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 334 | 
            +
                "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 335 | 
            +
                "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 336 | 
            +
                "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 337 | 
            +
                "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 338 | 
            +
                "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 339 | 
            +
                "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 340 | 
            +
                "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 341 | 
            +
                "vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
         | 
| 342 | 
            +
                "vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
         | 
| 343 | 
            +
                "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 344 | 
            +
                "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 345 | 
            +
                "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 346 | 
            +
                "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 347 | 
            +
                "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 348 | 
            +
                "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 349 | 
            +
                "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 350 | 
            +
                "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 351 | 
            +
                "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 352 | 
            +
                "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 353 | 
            +
                "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 354 | 
            +
                "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 355 | 
            +
                "vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
         | 
| 356 | 
            +
                "vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
         | 
| 357 | 
            +
                "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 358 | 
            +
                "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 359 | 
            +
                "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 360 | 
            +
                "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 361 | 
            +
                "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 362 | 
            +
                "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 363 | 
            +
                "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 364 | 
            +
                "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 365 | 
            +
                "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 366 | 
            +
                "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 367 | 
            +
                "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 368 | 
            +
                "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 369 | 
            +
                "vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
         | 
| 370 | 
            +
                "vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
         | 
| 371 | 
            +
                "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 372 | 
            +
                "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 373 | 
            +
                "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 374 | 
            +
                "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 375 | 
            +
                "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 376 | 
            +
                "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 377 | 
            +
                "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 378 | 
            +
                "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 379 | 
            +
                "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 380 | 
            +
                "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 381 | 
            +
                "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 382 | 
            +
                "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 383 | 
            +
                "vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
         | 
| 384 | 
            +
                "vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
         | 
| 385 | 
            +
                "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 386 | 
            +
                "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 387 | 
            +
                "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 388 | 
            +
                "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 389 | 
            +
                "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 390 | 
            +
                "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 391 | 
            +
                "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 392 | 
            +
                "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 393 | 
            +
                "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 394 | 
            +
                "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 395 | 
            +
                "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 396 | 
            +
                "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 397 | 
            +
                "vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
         | 
| 398 | 
            +
                "vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
         | 
| 399 | 
            +
                "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 400 | 
            +
                "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 401 | 
            +
                "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 402 | 
            +
                "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 403 | 
            +
                "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 404 | 
            +
                "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 405 | 
            +
                "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 406 | 
            +
                "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 407 | 
            +
                "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 408 | 
            +
                "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 409 | 
            +
                "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 410 | 
            +
                "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 411 | 
            +
                "vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
         | 
| 412 | 
            +
                "vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
         | 
| 413 | 
            +
                "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 414 | 
            +
                "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 415 | 
            +
                "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 416 | 
            +
                "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 417 | 
            +
                "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 418 | 
            +
                "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 419 | 
            +
                "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 420 | 
            +
                "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 421 | 
            +
                "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 422 | 
            +
                "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 423 | 
            +
                "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 424 | 
            +
                "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 425 | 
            +
                "vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
         | 
| 426 | 
            +
                "vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
         | 
| 427 | 
            +
                "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 428 | 
            +
                "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 429 | 
            +
                "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 430 | 
            +
                "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 431 | 
            +
                "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 432 | 
            +
                "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 433 | 
            +
                "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 434 | 
            +
                "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 435 | 
            +
                "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 436 | 
            +
                "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 437 | 
            +
                "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 438 | 
            +
                "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 439 | 
            +
                "vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
         | 
| 440 | 
            +
                "vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
         | 
| 441 | 
            +
                "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 442 | 
            +
                "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 443 | 
            +
                "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 444 | 
            +
                "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 445 | 
            +
                "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 446 | 
            +
                "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 447 | 
            +
                "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 448 | 
            +
                "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 449 | 
            +
                "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 450 | 
            +
                "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 451 | 
            +
                "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 452 | 
            +
                "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 453 | 
            +
                "vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
         | 
| 454 | 
            +
                "vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
         | 
| 455 | 
            +
                "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 456 | 
            +
                "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 457 | 
            +
                "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 458 | 
            +
                "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 459 | 
            +
                "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 460 | 
            +
                "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 461 | 
            +
                "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 462 | 
            +
                "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 463 | 
            +
                "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 464 | 
            +
                "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 465 | 
            +
                "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 466 | 
            +
                "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 467 | 
            +
                "vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
         | 
| 468 | 
            +
                "vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
         | 
| 469 | 
            +
                "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 470 | 
            +
                "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 471 | 
            +
                "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 472 | 
            +
                "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 473 | 
            +
                "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 474 | 
            +
                "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 475 | 
            +
                "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 476 | 
            +
                "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 477 | 
            +
                "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 478 | 
            +
                "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 479 | 
            +
                "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 480 | 
            +
                "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 481 | 
            +
                "vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
         | 
| 482 | 
            +
                "vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
         | 
| 483 | 
            +
                "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 484 | 
            +
                "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 485 | 
            +
                "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 486 | 
            +
                "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 487 | 
            +
                "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 488 | 
            +
                "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 489 | 
            +
                "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 490 | 
            +
                "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 491 | 
            +
                "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 492 | 
            +
                "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 493 | 
            +
                "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 494 | 
            +
                "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 495 | 
            +
                "vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
         | 
| 496 | 
            +
                "vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
         | 
| 497 | 
            +
                "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 498 | 
            +
                "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 499 | 
            +
                "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 500 | 
            +
                "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 501 | 
            +
                "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 502 | 
            +
                "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 503 | 
            +
                "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 504 | 
            +
                "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 505 | 
            +
                "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 506 | 
            +
                "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 507 | 
            +
                "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 508 | 
            +
                "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 509 | 
            +
                "vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
         | 
| 510 | 
            +
                "vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
         | 
| 511 | 
            +
                "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 512 | 
            +
                "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 513 | 
            +
                "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 514 | 
            +
                "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 515 | 
            +
                "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 516 | 
            +
                "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 517 | 
            +
                "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 518 | 
            +
                "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 519 | 
            +
                "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 520 | 
            +
                "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 521 | 
            +
                "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 522 | 
            +
                "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 523 | 
            +
                "vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
         | 
| 524 | 
            +
                "vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
         | 
| 525 | 
            +
                "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 526 | 
            +
                "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 527 | 
            +
                "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 528 | 
            +
                "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 529 | 
            +
                "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 530 | 
            +
                "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 531 | 
            +
                "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 532 | 
            +
                "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 533 | 
            +
                "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
         | 
| 534 | 
            +
                "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 535 | 
            +
                "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
         | 
| 536 | 
            +
                "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 537 | 
            +
                "vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
         | 
| 538 | 
            +
                "vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
         | 
| 539 | 
            +
                "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
         | 
| 540 | 
            +
                "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 541 | 
            +
                "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
         | 
| 542 | 
            +
                "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 543 | 
            +
                "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
         | 
| 544 | 
            +
                "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 545 | 
            +
                "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
         | 
| 546 | 
            +
                "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
         | 
| 547 | 
            +
              }
         | 
| 548 | 
            +
            }
         | 
    	
        modeling_intern_vit.py
    ADDED
    
    | @@ -0,0 +1,434 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2023 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import torch.nn.functional as F
         | 
| 10 | 
            +
            import torch.utils.checkpoint
         | 
| 11 | 
            +
            from einops import rearrange
         | 
| 12 | 
            +
            from timm.models.layers import DropPath
         | 
| 13 | 
            +
            from torch import nn
         | 
| 14 | 
            +
            from transformers.activations import ACT2FN
         | 
| 15 | 
            +
            from transformers.modeling_outputs import (BaseModelOutput,
         | 
| 16 | 
            +
                                                       BaseModelOutputWithPooling)
         | 
| 17 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 18 | 
            +
            from transformers.utils import logging
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from .configuration_intern_vit import InternVisionConfig
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            try:
         | 
| 23 | 
            +
                try:  # v1
         | 
| 24 | 
            +
                    from flash_attn.flash_attn_interface import \
         | 
| 25 | 
            +
                        flash_attn_unpadded_qkvpacked_func
         | 
| 26 | 
            +
                except:  # v2
         | 
| 27 | 
            +
                    from flash_attn.flash_attn_interface import \
         | 
| 28 | 
            +
                        flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                from flash_attn.bert_padding import pad_input, unpad_input
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                has_flash_attn = True
         | 
| 33 | 
            +
            except:
         | 
| 34 | 
            +
                print('FlashAttention is not installed.')
         | 
| 35 | 
            +
                has_flash_attn = False
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            class FlashAttention(nn.Module):
         | 
| 41 | 
            +
                """Implement the scaled dot product attention with softmax.
         | 
| 42 | 
            +
                Arguments
         | 
| 43 | 
            +
                ---------
         | 
| 44 | 
            +
                    softmax_scale: The temperature to use for the softmax attention.
         | 
| 45 | 
            +
                                  (default: 1/sqrt(d_keys) where d_keys is computed at
         | 
| 46 | 
            +
                                  runtime)
         | 
| 47 | 
            +
                    attention_dropout: The dropout rate to apply to the attention
         | 
| 48 | 
            +
                                       (default: 0.0)
         | 
| 49 | 
            +
                """
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
         | 
| 52 | 
            +
                    super().__init__()
         | 
| 53 | 
            +
                    self.softmax_scale = softmax_scale
         | 
| 54 | 
            +
                    self.dropout_p = attention_dropout
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
         | 
| 57 | 
            +
                            max_s=None, need_weights=False):
         | 
| 58 | 
            +
                    """Implements the multihead softmax attention.
         | 
| 59 | 
            +
                    Arguments
         | 
| 60 | 
            +
                    ---------
         | 
| 61 | 
            +
                        qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
         | 
| 62 | 
            +
                            if unpadded: (nnz, 3, h, d)
         | 
| 63 | 
            +
                        key_padding_mask: a bool tensor of shape (B, S)
         | 
| 64 | 
            +
                    """
         | 
| 65 | 
            +
                    assert not need_weights
         | 
| 66 | 
            +
                    assert qkv.dtype in [torch.float16, torch.bfloat16]
         | 
| 67 | 
            +
                    assert qkv.is_cuda
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    if cu_seqlens is None:
         | 
| 70 | 
            +
                        batch_size = qkv.shape[0]
         | 
| 71 | 
            +
                        seqlen = qkv.shape[1]
         | 
| 72 | 
            +
                        if key_padding_mask is None:
         | 
| 73 | 
            +
                            qkv = rearrange(qkv, 'b s ... -> (b s) ...')
         | 
| 74 | 
            +
                            max_s = seqlen
         | 
| 75 | 
            +
                            cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
         | 
| 76 | 
            +
                                                      device=qkv.device)
         | 
| 77 | 
            +
                            output = flash_attn_unpadded_qkvpacked_func(
         | 
| 78 | 
            +
                                qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 79 | 
            +
                                softmax_scale=self.softmax_scale, causal=causal
         | 
| 80 | 
            +
                            )
         | 
| 81 | 
            +
                            output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
         | 
| 82 | 
            +
                        else:
         | 
| 83 | 
            +
                            nheads = qkv.shape[-2]
         | 
| 84 | 
            +
                            x = rearrange(qkv, 'b s three h d -> b s (three h d)')
         | 
| 85 | 
            +
                            x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
         | 
| 86 | 
            +
                            x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
         | 
| 87 | 
            +
                            output_unpad = flash_attn_unpadded_qkvpacked_func(
         | 
| 88 | 
            +
                                x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 89 | 
            +
                                softmax_scale=self.softmax_scale, causal=causal
         | 
| 90 | 
            +
                            )
         | 
| 91 | 
            +
                            output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
         | 
| 92 | 
            +
                                                         indices, batch_size, seqlen),
         | 
| 93 | 
            +
                                               'b s (h d) -> b s h d', h=nheads)
         | 
| 94 | 
            +
                    else:
         | 
| 95 | 
            +
                        assert max_s is not None
         | 
| 96 | 
            +
                        output = flash_attn_unpadded_qkvpacked_func(
         | 
| 97 | 
            +
                            qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 98 | 
            +
                            softmax_scale=self.softmax_scale, causal=causal
         | 
| 99 | 
            +
                        )
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    return output, None
         | 
| 102 | 
            +
             | 
| 103 | 
            +
             | 
| 104 | 
            +
            class InternRMSNorm(nn.Module):
         | 
| 105 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 106 | 
            +
                    super().__init__()
         | 
| 107 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 108 | 
            +
                    self.variance_epsilon = eps
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def forward(self, hidden_states):
         | 
| 111 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 112 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 113 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 114 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 115 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            try:
         | 
| 119 | 
            +
                from apex.normalization import FusedRMSNorm
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                InternRMSNorm = FusedRMSNorm  # noqa
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
         | 
| 124 | 
            +
            except ImportError:
         | 
| 125 | 
            +
                # using the normal InternRMSNorm
         | 
| 126 | 
            +
                pass
         | 
| 127 | 
            +
            except Exception:
         | 
| 128 | 
            +
                logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
         | 
| 129 | 
            +
                pass
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            NORM2FN = {
         | 
| 133 | 
            +
                'rms_norm': InternRMSNorm,
         | 
| 134 | 
            +
                'layer_norm': nn.LayerNorm,
         | 
| 135 | 
            +
            }
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            class InternVisionEmbeddings(nn.Module):
         | 
| 139 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 140 | 
            +
                    super().__init__()
         | 
| 141 | 
            +
                    self.config = config
         | 
| 142 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 143 | 
            +
                    self.image_size = config.image_size
         | 
| 144 | 
            +
                    self.patch_size = config.patch_size
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    self.class_embedding = nn.Parameter(
         | 
| 147 | 
            +
                        torch.randn(1, 1, self.embed_dim),
         | 
| 148 | 
            +
                    )
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    self.patch_embedding = nn.Conv2d(
         | 
| 151 | 
            +
                        in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    self.num_patches = (self.image_size // self.patch_size) ** 2
         | 
| 155 | 
            +
                    self.num_positions = self.num_patches + 1
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                def _get_pos_embed(self, pos_embed, H, W):
         | 
| 160 | 
            +
                    target_dtype = pos_embed.dtype
         | 
| 161 | 
            +
                    pos_embed = pos_embed.float().reshape(
         | 
| 162 | 
            +
                        1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
         | 
| 163 | 
            +
                    pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
         | 
| 164 | 
            +
                        reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
         | 
| 165 | 
            +
                    return pos_embed
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
         | 
| 168 | 
            +
                    target_dtype = self.patch_embedding.weight.dtype
         | 
| 169 | 
            +
                    patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, channel, width, height]
         | 
| 170 | 
            +
                    batch_size, _, height, width = patch_embeds.shape
         | 
| 171 | 
            +
                    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
         | 
| 172 | 
            +
                    class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
         | 
| 173 | 
            +
                    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
         | 
| 174 | 
            +
                    position_embedding = torch.cat([
         | 
| 175 | 
            +
                        self.position_embedding[:, :1, :],
         | 
| 176 | 
            +
                        self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
         | 
| 177 | 
            +
                    ], dim=1)
         | 
| 178 | 
            +
                    embeddings = embeddings + position_embedding.to(target_dtype)
         | 
| 179 | 
            +
                    return embeddings
         | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
            +
            class InternAttention(nn.Module):
         | 
| 183 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 186 | 
            +
                    super().__init__()
         | 
| 187 | 
            +
                    self.config = config
         | 
| 188 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 189 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 190 | 
            +
                    self.use_flash_attn = config.use_flash_attn and has_flash_attn
         | 
| 191 | 
            +
                    if config.use_flash_attn and not has_flash_attn:
         | 
| 192 | 
            +
                        print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
         | 
| 193 | 
            +
                    self.head_dim = self.embed_dim // self.num_heads
         | 
| 194 | 
            +
                    if self.head_dim * self.num_heads != self.embed_dim:
         | 
| 195 | 
            +
                        raise ValueError(
         | 
| 196 | 
            +
                            f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
         | 
| 197 | 
            +
                            f' {self.num_heads}).'
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    self.scale = self.head_dim ** -0.5
         | 
| 201 | 
            +
                    self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
         | 
| 202 | 
            +
                    self.attn_drop = nn.Dropout(config.attention_dropout)
         | 
| 203 | 
            +
                    self.proj_drop = nn.Dropout(config.dropout)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    self.qk_normalization = config.qk_normalization
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    if self.qk_normalization:
         | 
| 208 | 
            +
                        self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
         | 
| 209 | 
            +
                        self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if self.use_flash_attn:
         | 
| 212 | 
            +
                        self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
         | 
| 213 | 
            +
                    self.proj = nn.Linear(self.embed_dim, self.embed_dim)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                def _naive_attn(self, x):
         | 
| 216 | 
            +
                    B, N, C = x.shape
         | 
| 217 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 218 | 
            +
                    q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    if self.qk_normalization:
         | 
| 221 | 
            +
                        B_, H_, N_, D_ = q.shape
         | 
| 222 | 
            +
                        q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
         | 
| 223 | 
            +
                        k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    attn = ((q * self.scale) @ k.transpose(-2, -1))
         | 
| 226 | 
            +
                    attn = attn.softmax(dim=-1)
         | 
| 227 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 230 | 
            +
                    x = self.proj(x)
         | 
| 231 | 
            +
                    x = self.proj_drop(x)
         | 
| 232 | 
            +
                    return x
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
         | 
| 235 | 
            +
                    qkv = self.qkv(x)
         | 
| 236 | 
            +
                    qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    if self.qk_normalization:
         | 
| 239 | 
            +
                        q, k, v = qkv.unbind(2)
         | 
| 240 | 
            +
                        q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
         | 
| 241 | 
            +
                        k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
         | 
| 242 | 
            +
                        qkv = torch.stack([q, k, v], dim=2)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    context, _ = self.inner_attn(
         | 
| 245 | 
            +
                        qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
         | 
| 246 | 
            +
                    )
         | 
| 247 | 
            +
                    outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
         | 
| 248 | 
            +
                    outs = self.proj_drop(outs)
         | 
| 249 | 
            +
                    return outs
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 252 | 
            +
                    x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
         | 
| 253 | 
            +
                    return x
         | 
| 254 | 
            +
             | 
| 255 | 
            +
             | 
| 256 | 
            +
            class InternMLP(nn.Module):
         | 
| 257 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 258 | 
            +
                    super().__init__()
         | 
| 259 | 
            +
                    self.config = config
         | 
| 260 | 
            +
                    self.act = ACT2FN[config.hidden_act]
         | 
| 261 | 
            +
                    self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
         | 
| 262 | 
            +
                    self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 265 | 
            +
                    hidden_states = self.fc1(hidden_states)
         | 
| 266 | 
            +
                    hidden_states = self.act(hidden_states)
         | 
| 267 | 
            +
                    hidden_states = self.fc2(hidden_states)
         | 
| 268 | 
            +
                    return hidden_states
         | 
| 269 | 
            +
             | 
| 270 | 
            +
             | 
| 271 | 
            +
            class InternVisionEncoderLayer(nn.Module):
         | 
| 272 | 
            +
                def __init__(self, config: InternVisionConfig, drop_path_rate: float):
         | 
| 273 | 
            +
                    super().__init__()
         | 
| 274 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 275 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 276 | 
            +
                    self.norm_type = config.norm_type
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    self.attn = InternAttention(config)
         | 
| 279 | 
            +
                    self.mlp = InternMLP(config)
         | 
| 280 | 
            +
                    self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 281 | 
            +
                    self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 284 | 
            +
                    self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 285 | 
            +
                    self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
         | 
| 286 | 
            +
                    self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                def forward(
         | 
| 289 | 
            +
                        self,
         | 
| 290 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 291 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
         | 
| 292 | 
            +
                    """
         | 
| 293 | 
            +
                    Args:
         | 
| 294 | 
            +
                        hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 295 | 
            +
                    """
         | 
| 296 | 
            +
                    hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    return hidden_states
         | 
| 301 | 
            +
             | 
| 302 | 
            +
             | 
| 303 | 
            +
            class InternVisionEncoder(nn.Module):
         | 
| 304 | 
            +
                """
         | 
| 305 | 
            +
                Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
         | 
| 306 | 
            +
                [`InternEncoderLayer`].
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                Args:
         | 
| 309 | 
            +
                    config (`InternConfig`):
         | 
| 310 | 
            +
                        The corresponding vision configuration for the `InternEncoder`.
         | 
| 311 | 
            +
                """
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 314 | 
            +
                    super().__init__()
         | 
| 315 | 
            +
                    self.config = config
         | 
| 316 | 
            +
                    # stochastic depth decay rule
         | 
| 317 | 
            +
                    dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
         | 
| 318 | 
            +
                    self.layers = nn.ModuleList([
         | 
| 319 | 
            +
                        InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
         | 
| 320 | 
            +
                    self.gradient_checkpointing = True
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                def forward(
         | 
| 323 | 
            +
                        self,
         | 
| 324 | 
            +
                        inputs_embeds,
         | 
| 325 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 326 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 327 | 
            +
                ) -> Union[Tuple, BaseModelOutput]:
         | 
| 328 | 
            +
                    r"""
         | 
| 329 | 
            +
                    Args:
         | 
| 330 | 
            +
                        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
         | 
| 331 | 
            +
                            Embedded representation of the inputs. Should be float, not int tokens.
         | 
| 332 | 
            +
                        output_hidden_states (`bool`, *optional*):
         | 
| 333 | 
            +
                            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
         | 
| 334 | 
            +
                            for more detail.
         | 
| 335 | 
            +
                        return_dict (`bool`, *optional*):
         | 
| 336 | 
            +
                            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 337 | 
            +
                    """
         | 
| 338 | 
            +
                    output_hidden_states = (
         | 
| 339 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 340 | 
            +
                    )
         | 
| 341 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    encoder_states = () if output_hidden_states else None
         | 
| 344 | 
            +
                    hidden_states = inputs_embeds
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    for idx, encoder_layer in enumerate(self.layers):
         | 
| 347 | 
            +
                        if output_hidden_states:
         | 
| 348 | 
            +
                            encoder_states = encoder_states + (hidden_states,)
         | 
| 349 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 350 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 351 | 
            +
                                encoder_layer,
         | 
| 352 | 
            +
                                hidden_states)
         | 
| 353 | 
            +
                        else:
         | 
| 354 | 
            +
                            layer_outputs = encoder_layer(
         | 
| 355 | 
            +
                                hidden_states,
         | 
| 356 | 
            +
                            )
         | 
| 357 | 
            +
                        hidden_states = layer_outputs
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    if output_hidden_states:
         | 
| 360 | 
            +
                        encoder_states = encoder_states + (hidden_states,)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    if not return_dict:
         | 
| 363 | 
            +
                        return tuple(v for v in [hidden_states, encoder_states] if v is not None)
         | 
| 364 | 
            +
                    return BaseModelOutput(
         | 
| 365 | 
            +
                        last_hidden_state=hidden_states, hidden_states=encoder_states
         | 
| 366 | 
            +
                    )
         | 
| 367 | 
            +
             | 
| 368 | 
            +
             | 
| 369 | 
            +
            class InternVisionModel(PreTrainedModel):
         | 
| 370 | 
            +
                main_input_name = 'pixel_values'
         | 
| 371 | 
            +
                config_class = InternVisionConfig
         | 
| 372 | 
            +
                _no_split_modules = ['InternVisionEncoderLayer']
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 375 | 
            +
                    super().__init__(config)
         | 
| 376 | 
            +
                    self.config = config
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    self.embeddings = InternVisionEmbeddings(config)
         | 
| 379 | 
            +
                    self.encoder = InternVisionEncoder(config)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                def resize_pos_embeddings(self, old_size, new_size, patch_size):
         | 
| 382 | 
            +
                    pos_emb = self.embeddings.position_embedding
         | 
| 383 | 
            +
                    _, num_positions, embed_dim = pos_emb.shape
         | 
| 384 | 
            +
                    cls_emb = pos_emb[:, :1, :]
         | 
| 385 | 
            +
                    pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
         | 
| 386 | 
            +
                    pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
         | 
| 387 | 
            +
                    pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
         | 
| 388 | 
            +
                    pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
         | 
| 389 | 
            +
                    self.embeddings.position_embedding = nn.Parameter(pos_emb)
         | 
| 390 | 
            +
                    self.embeddings.image_size = new_size
         | 
| 391 | 
            +
                    logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                def get_input_embeddings(self):
         | 
| 394 | 
            +
                    return self.embeddings
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                def forward(
         | 
| 397 | 
            +
                        self,
         | 
| 398 | 
            +
                        pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 399 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 400 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 401 | 
            +
                        pixel_embeds: Optional[torch.FloatTensor] = None,
         | 
| 402 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPooling]:
         | 
| 403 | 
            +
                    output_hidden_states = (
         | 
| 404 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 405 | 
            +
                    )
         | 
| 406 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    if pixel_values is None and pixel_embeds is None:
         | 
| 409 | 
            +
                        raise ValueError('You have to specify pixel_values or pixel_embeds')
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    if pixel_embeds is not None:
         | 
| 412 | 
            +
                        hidden_states = pixel_embeds
         | 
| 413 | 
            +
                    else:
         | 
| 414 | 
            +
                        if len(pixel_values.shape) == 4:
         | 
| 415 | 
            +
                            hidden_states = self.embeddings(pixel_values)
         | 
| 416 | 
            +
                        else:
         | 
| 417 | 
            +
                            raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
         | 
| 418 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 419 | 
            +
                        inputs_embeds=hidden_states,
         | 
| 420 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 421 | 
            +
                        return_dict=return_dict,
         | 
| 422 | 
            +
                    )
         | 
| 423 | 
            +
                    last_hidden_state = encoder_outputs.last_hidden_state
         | 
| 424 | 
            +
                    pooled_output = last_hidden_state[:, 0, :]
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    if not return_dict:
         | 
| 427 | 
            +
                        return (last_hidden_state, pooled_output) + encoder_outputs[1:]
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    return BaseModelOutputWithPooling(
         | 
| 430 | 
            +
                        last_hidden_state=last_hidden_state,
         | 
| 431 | 
            +
                        pooler_output=pooled_output,
         | 
| 432 | 
            +
                        hidden_states=encoder_outputs.hidden_states,
         | 
| 433 | 
            +
                        attentions=encoder_outputs.attentions,
         | 
| 434 | 
            +
                    )
         | 
    	
        modeling_internvl_chat.py
    ADDED
    
    | @@ -0,0 +1,323 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
            import warnings
         | 
| 7 | 
            +
            from typing import Any, List, Optional, Tuple, Union
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch.utils.checkpoint
         | 
| 10 | 
            +
            from torch import nn
         | 
| 11 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 12 | 
            +
            from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
         | 
| 13 | 
            +
                                      LlamaTokenizer)
         | 
| 14 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 15 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 16 | 
            +
            from transformers.utils import ModelOutput, logging
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from .configuration_internvl_chat import InternVLChatConfig
         | 
| 19 | 
            +
            from .conversation import get_conv_template
         | 
| 20 | 
            +
            from .modeling_intern_vit import InternVisionModel
         | 
| 21 | 
            +
            from .modeling_phi3 import Phi3ForCausalLM
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class InternVLChatModel(PreTrainedModel):
         | 
| 27 | 
            +
                config_class = InternVLChatConfig
         | 
| 28 | 
            +
                main_input_name = 'pixel_values'
         | 
| 29 | 
            +
                _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Phi3DecoderLayer']
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
         | 
| 32 | 
            +
                    super().__init__(config)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    image_size = config.force_image_size or config.vision_config.image_size
         | 
| 35 | 
            +
                    patch_size = config.vision_config.patch_size
         | 
| 36 | 
            +
                    self.patch_size = patch_size
         | 
| 37 | 
            +
                    self.select_layer = config.select_layer
         | 
| 38 | 
            +
                    self.template = config.template
         | 
| 39 | 
            +
                    self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
         | 
| 40 | 
            +
                    self.downsample_ratio = config.downsample_ratio
         | 
| 41 | 
            +
                    self.ps_version = config.ps_version
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    logger.info(f'num_image_token: {self.num_image_token}')
         | 
| 44 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 45 | 
            +
                    if vision_model is not None:
         | 
| 46 | 
            +
                        self.vision_model = vision_model
         | 
| 47 | 
            +
                    else:
         | 
| 48 | 
            +
                        self.vision_model = InternVisionModel(config.vision_config)
         | 
| 49 | 
            +
                    if language_model is not None:
         | 
| 50 | 
            +
                        self.language_model = language_model
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        if config.llm_config.architectures[0] == 'LlamaForCausalLM':
         | 
| 53 | 
            +
                            self.language_model = LlamaForCausalLM(config.llm_config)
         | 
| 54 | 
            +
                        elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
         | 
| 55 | 
            +
                            self.language_model = Phi3ForCausalLM(config.llm_config)
         | 
| 56 | 
            +
                        else:
         | 
| 57 | 
            +
                            raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    vit_hidden_size = config.vision_config.hidden_size
         | 
| 60 | 
            +
                    llm_hidden_size = config.llm_config.hidden_size
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    self.mlp1 = nn.Sequential(
         | 
| 63 | 
            +
                        nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
         | 
| 64 | 
            +
                        nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
         | 
| 65 | 
            +
                        nn.GELU(),
         | 
| 66 | 
            +
                        nn.Linear(llm_hidden_size, llm_hidden_size)
         | 
| 67 | 
            +
                    )
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    self.img_context_token_id = None
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                def forward(
         | 
| 72 | 
            +
                        self,
         | 
| 73 | 
            +
                        pixel_values: torch.FloatTensor,
         | 
| 74 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 75 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 76 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 77 | 
            +
                        image_flags: Optional[torch.LongTensor] = None,
         | 
| 78 | 
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 79 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 80 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 81 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 82 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 83 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 84 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 85 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    image_flags = image_flags.squeeze(-1)
         | 
| 88 | 
            +
                    input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    vit_embeds = self.extract_feature(pixel_values)
         | 
| 91 | 
            +
                    vit_embeds = vit_embeds[image_flags == 1]
         | 
| 92 | 
            +
                    vit_batch_size = pixel_values.shape[0]
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    B, N, C = input_embeds.shape
         | 
| 95 | 
            +
                    input_embeds = input_embeds.reshape(B * N, C)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    if torch.distributed.get_rank() == 0:
         | 
| 98 | 
            +
                        print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    input_ids = input_ids.reshape(B * N)
         | 
| 101 | 
            +
                    selected = (input_ids == self.img_context_token_id)
         | 
| 102 | 
            +
                    try:
         | 
| 103 | 
            +
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
         | 
| 104 | 
            +
                    except Exception as e:
         | 
| 105 | 
            +
                        vit_embeds = vit_embeds.reshape(-1, C)
         | 
| 106 | 
            +
                        print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
         | 
| 107 | 
            +
                              f'vit_embeds.shape={vit_embeds.shape}')
         | 
| 108 | 
            +
                        n_token = selected.sum()
         | 
| 109 | 
            +
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    input_embeds = input_embeds.reshape(B, N, C)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    outputs = self.language_model(
         | 
| 114 | 
            +
                        inputs_embeds=input_embeds,
         | 
| 115 | 
            +
                        attention_mask=attention_mask,
         | 
| 116 | 
            +
                        position_ids=position_ids,
         | 
| 117 | 
            +
                        past_key_values=past_key_values,
         | 
| 118 | 
            +
                        use_cache=use_cache,
         | 
| 119 | 
            +
                        output_attentions=output_attentions,
         | 
| 120 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 121 | 
            +
                        return_dict=return_dict,
         | 
| 122 | 
            +
                    )
         | 
| 123 | 
            +
                    logits = outputs.logits
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    loss = None
         | 
| 126 | 
            +
                    if labels is not None:
         | 
| 127 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 128 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 129 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 130 | 
            +
                        # Flatten the tokens
         | 
| 131 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 132 | 
            +
                        shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
         | 
| 133 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 134 | 
            +
                        # Enable model parallelism
         | 
| 135 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 136 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    if not return_dict:
         | 
| 139 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 140 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 143 | 
            +
                        loss=loss,
         | 
| 144 | 
            +
                        logits=logits,
         | 
| 145 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 146 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 147 | 
            +
                        attentions=outputs.attentions,
         | 
| 148 | 
            +
                    )
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def pixel_shuffle(self, x, scale_factor=0.5):
         | 
| 151 | 
            +
                    n, w, h, c = x.size()
         | 
| 152 | 
            +
                    # N, W, H, C --> N, W, H * scale, C // scale
         | 
| 153 | 
            +
                    x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
         | 
| 154 | 
            +
                    # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
         | 
| 155 | 
            +
                    x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 156 | 
            +
                    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
         | 
| 157 | 
            +
                    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
         | 
| 158 | 
            +
                               int(c / (scale_factor * scale_factor)))
         | 
| 159 | 
            +
                    if self.ps_version == 'v1':
         | 
| 160 | 
            +
                        warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
         | 
| 161 | 
            +
                                      'which results in a transposed image.')
         | 
| 162 | 
            +
                    else:
         | 
| 163 | 
            +
                        x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 164 | 
            +
                    return x
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def extract_feature(self, pixel_values):
         | 
| 167 | 
            +
                    if self.select_layer == -1:
         | 
| 168 | 
            +
                        vit_embeds = self.vision_model(
         | 
| 169 | 
            +
                            pixel_values=pixel_values,
         | 
| 170 | 
            +
                            output_hidden_states=False,
         | 
| 171 | 
            +
                            return_dict=True).last_hidden_state
         | 
| 172 | 
            +
                    else:
         | 
| 173 | 
            +
                        vit_embeds = self.vision_model(
         | 
| 174 | 
            +
                            pixel_values=pixel_values,
         | 
| 175 | 
            +
                            output_hidden_states=True,
         | 
| 176 | 
            +
                            return_dict=True).hidden_states[self.select_layer]
         | 
| 177 | 
            +
                    vit_embeds = vit_embeds[:, 1:, :]
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    h = w = int(vit_embeds.shape[1] ** 0.5)
         | 
| 180 | 
            +
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
         | 
| 181 | 
            +
                    vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
         | 
| 182 | 
            +
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
         | 
| 183 | 
            +
                    vit_embeds = self.mlp1(vit_embeds)
         | 
| 184 | 
            +
                    return vit_embeds
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def batch_chat(self, tokenizer, pixel_values, num_patches_list, questions, generation_config, history=None,
         | 
| 187 | 
            +
                                     return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
         | 
| 188 | 
            +
                                     IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False):
         | 
| 189 | 
            +
                    if history is not None or return_history:
         | 
| 190 | 
            +
                        print('Now multi-turn chat is not supported in batch_chat.')
         | 
| 191 | 
            +
                        raise NotImplementedError
         | 
| 192 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 193 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    from .conversation import get_conv_template
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    queries = []
         | 
| 198 | 
            +
                    if verbose:
         | 
| 199 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 200 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}, num_patches_list: {num_patches_list}')
         | 
| 201 | 
            +
                    for idx, num_patches in enumerate(num_patches_list):
         | 
| 202 | 
            +
                        image_token = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 203 | 
            +
                        question = image_token + '\n' + questions[idx]
         | 
| 204 | 
            +
                        template = get_conv_template(self.template)
         | 
| 205 | 
            +
                        template.append_message(template.roles[0], question)
         | 
| 206 | 
            +
                        template.append_message(template.roles[1], None)
         | 
| 207 | 
            +
                        query = template.get_prompt()
         | 
| 208 | 
            +
                        queries.append(query)
         | 
| 209 | 
            +
                    tokenizer.padding_side = 'left'
         | 
| 210 | 
            +
                    model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
         | 
| 211 | 
            +
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 212 | 
            +
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 213 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
         | 
| 214 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    generation_output = self.generate(
         | 
| 217 | 
            +
                        pixel_values=pixel_values,
         | 
| 218 | 
            +
                        input_ids=input_ids,
         | 
| 219 | 
            +
                        attention_mask=attention_mask,
         | 
| 220 | 
            +
                        **generation_config
         | 
| 221 | 
            +
                    )
         | 
| 222 | 
            +
                    responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
         | 
| 223 | 
            +
                    responses = [response.split(template.sep)[0].strip() for response in responses]
         | 
| 224 | 
            +
                    return responses
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
         | 
| 227 | 
            +
                         num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
         | 
| 228 | 
            +
                         verbose=False):
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    if history is None and pixel_values is not None and '<image>' not in question:
         | 
| 231 | 
            +
                        question = '<image>\n' + question
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    if num_patches_list is None:
         | 
| 234 | 
            +
                        num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
         | 
| 235 | 
            +
                    assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 238 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    template = get_conv_template(self.template)
         | 
| 241 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    history = [] if history is None else history
         | 
| 244 | 
            +
                    for (old_question, old_answer) in history:
         | 
| 245 | 
            +
                        template.append_message(template.roles[0], old_question)
         | 
| 246 | 
            +
                        template.append_message(template.roles[1], old_answer)
         | 
| 247 | 
            +
                    template.append_message(template.roles[0], question)
         | 
| 248 | 
            +
                    template.append_message(template.roles[1], None)
         | 
| 249 | 
            +
                    query = template.get_prompt()
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 252 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 253 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    for num_patches in num_patches_list:
         | 
| 256 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 257 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    model_inputs = tokenizer(query, return_tensors='pt')
         | 
| 260 | 
            +
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 261 | 
            +
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 262 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 263 | 
            +
                    generation_output = self.generate(
         | 
| 264 | 
            +
                        pixel_values=pixel_values,
         | 
| 265 | 
            +
                        input_ids=input_ids,
         | 
| 266 | 
            +
                        attention_mask=attention_mask,
         | 
| 267 | 
            +
                        **generation_config
         | 
| 268 | 
            +
                    )
         | 
| 269 | 
            +
                    response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
         | 
| 270 | 
            +
                    response = response.split(template.sep)[0].strip()
         | 
| 271 | 
            +
                    history.append((question, response))
         | 
| 272 | 
            +
                    if return_history:
         | 
| 273 | 
            +
                        return response, history
         | 
| 274 | 
            +
                    else:
         | 
| 275 | 
            +
                        query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
         | 
| 276 | 
            +
                        query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
         | 
| 277 | 
            +
                        if verbose:
         | 
| 278 | 
            +
                            print(query_to_print, response)
         | 
| 279 | 
            +
                        return response
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                @torch.no_grad()
         | 
| 282 | 
            +
                def generate(
         | 
| 283 | 
            +
                        self,
         | 
| 284 | 
            +
                        pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 285 | 
            +
                        input_ids: Optional[torch.FloatTensor] = None,
         | 
| 286 | 
            +
                        attention_mask: Optional[torch.LongTensor] = None,
         | 
| 287 | 
            +
                        visual_features: Optional[torch.FloatTensor] = None,
         | 
| 288 | 
            +
                        generation_config: Optional[GenerationConfig] = None,
         | 
| 289 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 290 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 291 | 
            +
                        **generate_kwargs,
         | 
| 292 | 
            +
                ) -> torch.LongTensor:
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    assert self.img_context_token_id is not None
         | 
| 295 | 
            +
                    if pixel_values is not None:
         | 
| 296 | 
            +
                        if visual_features is not None:
         | 
| 297 | 
            +
                            vit_embeds = visual_features
         | 
| 298 | 
            +
                        else:
         | 
| 299 | 
            +
                            vit_embeds = self.extract_feature(pixel_values)
         | 
| 300 | 
            +
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 301 | 
            +
                        B, N, C = input_embeds.shape
         | 
| 302 | 
            +
                        input_embeds = input_embeds.reshape(B * N, C)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                        input_ids = input_ids.reshape(B * N)
         | 
| 305 | 
            +
                        selected = (input_ids == self.img_context_token_id)
         | 
| 306 | 
            +
                        assert selected.sum() != 0
         | 
| 307 | 
            +
                        input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                        input_embeds = input_embeds.reshape(B, N, C)
         | 
| 310 | 
            +
                    else:
         | 
| 311 | 
            +
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    outputs = self.language_model.generate(
         | 
| 314 | 
            +
                        inputs_embeds=input_embeds,
         | 
| 315 | 
            +
                        attention_mask=attention_mask,
         | 
| 316 | 
            +
                        generation_config=generation_config,
         | 
| 317 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 318 | 
            +
                        return_dict=return_dict,
         | 
| 319 | 
            +
                        use_cache=True,
         | 
| 320 | 
            +
                        **generate_kwargs,
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    return outputs
         | 
    	
        modeling_phi3.py
    ADDED
    
    | @@ -0,0 +1,1601 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            """ PyTorch Phi-3 model."""
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import inspect
         | 
| 18 | 
            +
            import math
         | 
| 19 | 
            +
            import warnings
         | 
| 20 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.nn.functional as F
         | 
| 24 | 
            +
            import torch.utils.checkpoint
         | 
| 25 | 
            +
            from torch import nn
         | 
| 26 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 27 | 
            +
            from transformers.activations import ACT2FN
         | 
| 28 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 29 | 
            +
            from transformers.modeling_attn_mask_utils import \
         | 
| 30 | 
            +
                _prepare_4d_causal_attention_mask
         | 
| 31 | 
            +
            from transformers.modeling_outputs import (BaseModelOutputWithPast,
         | 
| 32 | 
            +
                                                       CausalLMOutputWithPast,
         | 
| 33 | 
            +
                                                       SequenceClassifierOutputWithPast,
         | 
| 34 | 
            +
                                                       TokenClassifierOutput)
         | 
| 35 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 36 | 
            +
            from transformers.utils import (add_code_sample_docstrings,
         | 
| 37 | 
            +
                                            add_start_docstrings,
         | 
| 38 | 
            +
                                            add_start_docstrings_to_model_forward,
         | 
| 39 | 
            +
                                            is_flash_attn_2_available,
         | 
| 40 | 
            +
                                            is_flash_attn_greater_or_equal_2_10, logging,
         | 
| 41 | 
            +
                                            replace_return_docstrings)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            from .configuration_phi3 import Phi3Config
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
         | 
| 48 | 
            +
            # if is_flash_attn_2_available():
         | 
| 49 | 
            +
            _flash_supports_window_size = False
         | 
| 50 | 
            +
            try:
         | 
| 51 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 52 | 
            +
                from flash_attn.bert_padding import (index_first_axis, pad_input,  # noqa
         | 
| 53 | 
            +
                                                     unpad_input)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                _flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
         | 
| 56 | 
            +
            except ImportError as error:
         | 
| 57 | 
            +
                logger.warning(
         | 
| 58 | 
            +
                    f'`flash-attention` package not found, consider installing for better performance: {error}.'
         | 
| 59 | 
            +
                )
         | 
| 60 | 
            +
                if not _flash_supports_window_size:
         | 
| 61 | 
            +
                    logger.warning(
         | 
| 62 | 
            +
                        "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
         | 
| 63 | 
            +
                    )
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            _CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
         | 
| 66 | 
            +
            _CONFIG_FOR_DOC = 'Phi3Config'
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
         | 
| 69 | 
            +
                'microsoft/Phi-3-mini-4k-instruct',
         | 
| 70 | 
            +
                'microsoft/Phi-3-mini-128k-instruct',
         | 
| 71 | 
            +
                # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
         | 
| 72 | 
            +
            ]
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
         | 
| 76 | 
            +
            class Phi3RMSNorm(nn.Module):
         | 
| 77 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 78 | 
            +
                    """
         | 
| 79 | 
            +
                    Phi3RMSNorm is equivalent to T5LayerNorm
         | 
| 80 | 
            +
                    """
         | 
| 81 | 
            +
                    super().__init__()
         | 
| 82 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 83 | 
            +
                    self.variance_epsilon = eps
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                def forward(self, hidden_states):
         | 
| 86 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 87 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 88 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 89 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 90 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            # Copied from transformers.models.llama.modeling_llama._get_unpad_data
         | 
| 94 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 95 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 96 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 97 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 98 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         | 
| 99 | 
            +
                return (
         | 
| 100 | 
            +
                    indices,
         | 
| 101 | 
            +
                    cu_seqlens,
         | 
| 102 | 
            +
                    max_seqlen_in_batch,
         | 
| 103 | 
            +
                )
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
         | 
| 107 | 
            +
            class Phi3RotaryEmbedding(nn.Module):
         | 
| 108 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 109 | 
            +
                    super().__init__()
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    self.dim = dim
         | 
| 112 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 113 | 
            +
                    self.base = base
         | 
| 114 | 
            +
                    self.register_buffer('inv_freq', None, persistent=False)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                @torch.no_grad()
         | 
| 117 | 
            +
                def forward(self, x, position_ids, seq_len=None):
         | 
| 118 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 119 | 
            +
                    if self.inv_freq is None:
         | 
| 120 | 
            +
                        self.inv_freq = 1.0 / (
         | 
| 121 | 
            +
                            self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
         | 
| 122 | 
            +
                        )
         | 
| 123 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 124 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 125 | 
            +
                    # Force float32 since bfloat16 loses precision on long contexts
         | 
| 126 | 
            +
                    # See https://github.com/huggingface/transformers/pull/29285
         | 
| 127 | 
            +
                    device_type = x.device.type
         | 
| 128 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
         | 
| 129 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 130 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 131 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 132 | 
            +
                        cos = emb.cos()
         | 
| 133 | 
            +
                        sin = emb.sin()
         | 
| 134 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
         | 
| 138 | 
            +
                def __init__(self, dim, config, device=None):
         | 
| 139 | 
            +
                    super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.short_factor = config.rope_scaling['short_factor']
         | 
| 142 | 
            +
                    self.long_factor = config.rope_scaling['long_factor']
         | 
| 143 | 
            +
                    self.original_max_position_embeddings = config.original_max_position_embeddings
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                @torch.no_grad()
         | 
| 146 | 
            +
                def forward(self, x, position_ids, seq_len=None):
         | 
| 147 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 148 | 
            +
                    if seq_len > self.original_max_position_embeddings:
         | 
| 149 | 
            +
                        ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
         | 
| 150 | 
            +
                    else:
         | 
| 151 | 
            +
                        ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
         | 
| 154 | 
            +
                    self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 157 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    # Force float32 since bfloat16 loses precision on long contexts
         | 
| 160 | 
            +
                    # See https://github.com/huggingface/transformers/pull/29285
         | 
| 161 | 
            +
                    device_type = x.device.type
         | 
| 162 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
         | 
| 163 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 164 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 165 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                        scale = self.max_position_embeddings / self.original_max_position_embeddings
         | 
| 168 | 
            +
                        if scale <= 1.0:
         | 
| 169 | 
            +
                            scaling_factor = 1.0
         | 
| 170 | 
            +
                        else:
         | 
| 171 | 
            +
                            scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                        cos = emb.cos() * scaling_factor
         | 
| 174 | 
            +
                        sin = emb.sin() * scaling_factor
         | 
| 175 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
             | 
| 178 | 
            +
            class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
         | 
| 179 | 
            +
                def __init__(self, dim, config, device=None):
         | 
| 180 | 
            +
                    super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    self.short_factor = config.rope_scaling['short_factor']
         | 
| 183 | 
            +
                    self.long_factor = config.rope_scaling['long_factor']
         | 
| 184 | 
            +
                    self.original_max_position_embeddings = config.original_max_position_embeddings
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                @torch.no_grad()
         | 
| 187 | 
            +
                def forward(self, x, position_ids, seq_len=None):
         | 
| 188 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 189 | 
            +
                    if seq_len > self.original_max_position_embeddings:
         | 
| 190 | 
            +
                        ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
         | 
| 191 | 
            +
                    else:
         | 
| 192 | 
            +
                        ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
         | 
| 195 | 
            +
                    self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 198 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    # Force float32 since bfloat16 loses precision on long contexts
         | 
| 201 | 
            +
                    # See https://github.com/huggingface/transformers/pull/29285
         | 
| 202 | 
            +
                    device_type = x.device.type
         | 
| 203 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
         | 
| 204 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 205 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 206 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                        scale = self.max_position_embeddings / self.original_max_position_embeddings
         | 
| 209 | 
            +
                        if scale <= 1.0:
         | 
| 210 | 
            +
                            scaling_factor = 1.0
         | 
| 211 | 
            +
                        else:
         | 
| 212 | 
            +
                            scaling_factor = 0.1 * math.log(scale) + 1.0
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        cos = emb.cos() * scaling_factor
         | 
| 215 | 
            +
                        sin = emb.sin() * scaling_factor
         | 
| 216 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
             | 
| 219 | 
            +
            # Copied from transformers.models.llama.modeling_llama.rotate_half
         | 
| 220 | 
            +
            def rotate_half(x):
         | 
| 221 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 222 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 223 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 224 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 225 | 
            +
             | 
| 226 | 
            +
             | 
| 227 | 
            +
            # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
         | 
| 228 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
         | 
| 229 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                Args:
         | 
| 232 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 233 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 234 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 235 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 236 | 
            +
                    position_ids (`torch.Tensor`, *optional*):
         | 
| 237 | 
            +
                        Deprecated and unused.
         | 
| 238 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 239 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 240 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 241 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 242 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 243 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 244 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 245 | 
            +
                Returns:
         | 
| 246 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 247 | 
            +
                """
         | 
| 248 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 249 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 250 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 251 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 252 | 
            +
                return q_embed, k_embed
         | 
| 253 | 
            +
             | 
| 254 | 
            +
             | 
| 255 | 
            +
            class Phi3MLP(nn.Module):
         | 
| 256 | 
            +
                def __init__(self, config):
         | 
| 257 | 
            +
                    super().__init__()
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    self.config = config
         | 
| 260 | 
            +
                    self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
         | 
| 261 | 
            +
                    self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    self.activation_fn = ACT2FN[config.hidden_act]
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
         | 
| 266 | 
            +
                    up_states = self.gate_up_proj(hidden_states)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    gate, up_states = up_states.chunk(2, dim=-1)
         | 
| 269 | 
            +
                    up_states = up_states * self.activation_fn(gate)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    return self.down_proj(up_states)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
             | 
| 274 | 
            +
            # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
         | 
| 275 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 276 | 
            +
                """
         | 
| 277 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 278 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 279 | 
            +
                """
         | 
| 280 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 281 | 
            +
                if n_rep == 1:
         | 
| 282 | 
            +
                    return hidden_states
         | 
| 283 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 284 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
             | 
| 287 | 
            +
            class Phi3Attention(nn.Module):
         | 
| 288 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
         | 
| 291 | 
            +
                    super().__init__()
         | 
| 292 | 
            +
                    self.config = config
         | 
| 293 | 
            +
                    self.layer_idx = layer_idx
         | 
| 294 | 
            +
                    if layer_idx is None:
         | 
| 295 | 
            +
                        logger.warning_once(
         | 
| 296 | 
            +
                            f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
         | 
| 297 | 
            +
                            'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
         | 
| 298 | 
            +
                            'when creating this class.'
         | 
| 299 | 
            +
                        )
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 302 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 303 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 304 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 305 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 306 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 307 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 308 | 
            +
                    self.original_max_position_embeddings = config.original_max_position_embeddings
         | 
| 309 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 310 | 
            +
                    self.rope_scaling = config.rope_scaling
         | 
| 311 | 
            +
                    self.is_causal = True
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 314 | 
            +
                        raise ValueError(
         | 
| 315 | 
            +
                            f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
         | 
| 316 | 
            +
                            f' and `num_heads`: {self.num_heads}).'
         | 
| 317 | 
            +
                        )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
         | 
| 320 | 
            +
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
         | 
| 321 | 
            +
                    self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
         | 
| 322 | 
            +
                    self._init_rope()
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                def _init_rope(self):
         | 
| 325 | 
            +
                    if self.rope_scaling is None:
         | 
| 326 | 
            +
                        self.rotary_emb = Phi3RotaryEmbedding(
         | 
| 327 | 
            +
                            self.head_dim,
         | 
| 328 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 329 | 
            +
                            base=self.rope_theta,
         | 
| 330 | 
            +
                        )
         | 
| 331 | 
            +
                    else:
         | 
| 332 | 
            +
                        scaling_type = self.config.rope_scaling['type']
         | 
| 333 | 
            +
                        if scaling_type == 'su':
         | 
| 334 | 
            +
                            self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
         | 
| 335 | 
            +
                        elif scaling_type == 'yarn':
         | 
| 336 | 
            +
                            self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
         | 
| 337 | 
            +
                        else:
         | 
| 338 | 
            +
                            raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                def forward(
         | 
| 341 | 
            +
                    self,
         | 
| 342 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 343 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 344 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 345 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 346 | 
            +
                    output_attentions: bool = False,
         | 
| 347 | 
            +
                    use_cache: bool = False,
         | 
| 348 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 349 | 
            +
                    logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    qkv = self.qkv_proj(hidden_states)
         | 
| 354 | 
            +
                    query_pos = self.num_heads * self.head_dim
         | 
| 355 | 
            +
                    query_states = qkv[..., :query_pos]
         | 
| 356 | 
            +
                    key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
         | 
| 357 | 
            +
                    value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 360 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 361 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 364 | 
            +
                    if past_key_value is not None:
         | 
| 365 | 
            +
                        if self.layer_idx is None:
         | 
| 366 | 
            +
                            raise ValueError(
         | 
| 367 | 
            +
                                f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
         | 
| 368 | 
            +
                                'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
         | 
| 369 | 
            +
                                'with a layer index.'
         | 
| 370 | 
            +
                            )
         | 
| 371 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 372 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    if past_key_value is not None:
         | 
| 377 | 
            +
                        cache_kwargs = {'sin': sin, 'cos': cos}  # Specific to RoPE models
         | 
| 378 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 381 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 382 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 387 | 
            +
                        raise ValueError(
         | 
| 388 | 
            +
                            f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
         | 
| 389 | 
            +
                            f' {attn_weights.size()}'
         | 
| 390 | 
            +
                        )
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    if attention_mask is not None:
         | 
| 393 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 394 | 
            +
                            raise ValueError(
         | 
| 395 | 
            +
                                f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
         | 
| 396 | 
            +
                            )
         | 
| 397 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    # upcast attention to fp32
         | 
| 400 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
         | 
| 401 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 406 | 
            +
                        raise ValueError(
         | 
| 407 | 
            +
                            f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
         | 
| 408 | 
            +
                            f' {attn_output.size()}'
         | 
| 409 | 
            +
                        )
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 412 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    if not output_attentions:
         | 
| 417 | 
            +
                        attn_weights = None
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 420 | 
            +
             | 
| 421 | 
            +
             | 
| 422 | 
            +
            class Phi3FlashAttention2(Phi3Attention):
         | 
| 423 | 
            +
                """
         | 
| 424 | 
            +
                Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
         | 
| 425 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 426 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 427 | 
            +
                """
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
         | 
| 430 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 431 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 434 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 435 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 436 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                def forward(
         | 
| 439 | 
            +
                    self,
         | 
| 440 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 441 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 442 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 443 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 444 | 
            +
                    output_attentions: bool = False,
         | 
| 445 | 
            +
                    use_cache: bool = False,
         | 
| 446 | 
            +
                    **kwargs,
         | 
| 447 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 448 | 
            +
                    # Phi3FlashAttention2 attention does not support output_attentions
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    if not _flash_supports_window_size:
         | 
| 451 | 
            +
                        logger.warning_once(
         | 
| 452 | 
            +
                            "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
         | 
| 453 | 
            +
                        )
         | 
| 454 | 
            +
                        raise ValueError('The current flash attention version does not support sliding window attention.')
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    output_attentions = False
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                    if 'padding_mask' in kwargs:
         | 
| 459 | 
            +
                        warnings.warn(
         | 
| 460 | 
            +
                            'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
         | 
| 461 | 
            +
                        )
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 464 | 
            +
                        attention_mask = kwargs.pop('padding_mask')
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                    qkv = self.qkv_proj(hidden_states)
         | 
| 469 | 
            +
                    query_pos = self.num_heads * self.head_dim
         | 
| 470 | 
            +
                    query_states = qkv[..., :query_pos]
         | 
| 471 | 
            +
                    key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
         | 
| 472 | 
            +
                    value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 475 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 476 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 477 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 478 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 479 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 482 | 
            +
                    if past_key_value is not None:
         | 
| 483 | 
            +
                        if self.layer_idx is None:
         | 
| 484 | 
            +
                            raise ValueError(
         | 
| 485 | 
            +
                                f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
         | 
| 486 | 
            +
                                'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
         | 
| 487 | 
            +
                                'with a layer index.'
         | 
| 488 | 
            +
                            )
         | 
| 489 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    # Because the input can be padded, the absolute sequence length depends on the max position id.
         | 
| 492 | 
            +
                    rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
         | 
| 493 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    use_sliding_windows = (
         | 
| 498 | 
            +
                        _flash_supports_window_size
         | 
| 499 | 
            +
                        and getattr(self.config, 'sliding_window', None) is not None
         | 
| 500 | 
            +
                        and kv_seq_len > self.config.sliding_window
         | 
| 501 | 
            +
                    )
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                    if past_key_value is not None:
         | 
| 504 | 
            +
                        # Activate slicing cache only if the config has a value `sliding_windows` attribute
         | 
| 505 | 
            +
                        cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
         | 
| 506 | 
            +
                        if (
         | 
| 507 | 
            +
                            getattr(self.config, 'sliding_window', None) is not None
         | 
| 508 | 
            +
                            and kv_seq_len > self.config.sliding_window
         | 
| 509 | 
            +
                            and cache_has_contents
         | 
| 510 | 
            +
                        ):
         | 
| 511 | 
            +
                            slicing_tokens = 1 - self.config.sliding_window
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                            past_key = past_key_value[self.layer_idx][0]
         | 
| 514 | 
            +
                            past_value = past_key_value[self.layer_idx][1]
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                            past_key = past_key[:, :, slicing_tokens:, :].contiguous()
         | 
| 517 | 
            +
                            past_value = past_value[:, :, slicing_tokens:, :].contiguous()
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                            if past_key.shape[-2] != self.config.sliding_window - 1:
         | 
| 520 | 
            +
                                raise ValueError(
         | 
| 521 | 
            +
                                    f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
         | 
| 522 | 
            +
                                    f' {past_key.shape}'
         | 
| 523 | 
            +
                                )
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                            if attention_mask is not None:
         | 
| 526 | 
            +
                                attention_mask = attention_mask[:, slicing_tokens:]
         | 
| 527 | 
            +
                                attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                        cache_kwargs = {'sin': sin, 'cos': cos}  # Specific to RoPE models
         | 
| 530 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 533 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 534 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 535 | 
            +
             | 
| 536 | 
            +
                    attn_dropout = self.attention_dropout if self.training else 0.0
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 539 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 540 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 541 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 542 | 
            +
                    # in fp32.
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    if query_states.dtype == torch.float32:
         | 
| 545 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 546 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 547 | 
            +
                        # Handle the case where the model is quantized
         | 
| 548 | 
            +
                        elif hasattr(self.config, '_pre_quantization_dtype'):
         | 
| 549 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 550 | 
            +
                        else:
         | 
| 551 | 
            +
                            target_dtype = self.qkv_proj.weight.dtype
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                        logger.warning_once(
         | 
| 554 | 
            +
                            f'The input hidden states seems to be silently casted in float32, this might be related to'
         | 
| 555 | 
            +
                            f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
         | 
| 556 | 
            +
                            f' {target_dtype}.'
         | 
| 557 | 
            +
                        )
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 560 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 561 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                    # Reashape to the expected shape for Flash Attention
         | 
| 564 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 565 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 566 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 569 | 
            +
                        query_states,
         | 
| 570 | 
            +
                        key_states,
         | 
| 571 | 
            +
                        value_states,
         | 
| 572 | 
            +
                        attention_mask,
         | 
| 573 | 
            +
                        q_len,
         | 
| 574 | 
            +
                        dropout=attn_dropout,
         | 
| 575 | 
            +
                        use_sliding_windows=use_sliding_windows,
         | 
| 576 | 
            +
                    )
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 579 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 580 | 
            +
             | 
| 581 | 
            +
                    if not output_attentions:
         | 
| 582 | 
            +
                        attn_weights = None
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
         | 
| 587 | 
            +
                def _flash_attention_forward(
         | 
| 588 | 
            +
                    self,
         | 
| 589 | 
            +
                    query_states,
         | 
| 590 | 
            +
                    key_states,
         | 
| 591 | 
            +
                    value_states,
         | 
| 592 | 
            +
                    attention_mask,
         | 
| 593 | 
            +
                    query_length,
         | 
| 594 | 
            +
                    dropout=0.0,
         | 
| 595 | 
            +
                    softmax_scale=None,
         | 
| 596 | 
            +
                    use_sliding_windows=False,
         | 
| 597 | 
            +
                ):
         | 
| 598 | 
            +
                    """
         | 
| 599 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 600 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    Args:
         | 
| 603 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 604 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 605 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 606 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 607 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 608 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 609 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 610 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 611 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 612 | 
            +
                        dropout (`float`):
         | 
| 613 | 
            +
                            Attention dropout
         | 
| 614 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 615 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 616 | 
            +
                        use_sliding_windows (`bool`, *optional*):
         | 
| 617 | 
            +
                            Whether to activate sliding window attention.
         | 
| 618 | 
            +
                    """
         | 
| 619 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 620 | 
            +
                        causal = self.is_causal
         | 
| 621 | 
            +
                    else:
         | 
| 622 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
         | 
| 623 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 626 | 
            +
                    if attention_mask is not None:
         | 
| 627 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 628 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 629 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 630 | 
            +
                        )
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 633 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                        if not use_sliding_windows:
         | 
| 636 | 
            +
                            attn_output_unpad = flash_attn_varlen_func(
         | 
| 637 | 
            +
                                query_states,
         | 
| 638 | 
            +
                                key_states,
         | 
| 639 | 
            +
                                value_states,
         | 
| 640 | 
            +
                                cu_seqlens_q=cu_seqlens_q,
         | 
| 641 | 
            +
                                cu_seqlens_k=cu_seqlens_k,
         | 
| 642 | 
            +
                                max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 643 | 
            +
                                max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 644 | 
            +
                                dropout_p=dropout,
         | 
| 645 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 646 | 
            +
                                causal=causal,
         | 
| 647 | 
            +
                            )
         | 
| 648 | 
            +
                        else:
         | 
| 649 | 
            +
                            attn_output_unpad = flash_attn_varlen_func(
         | 
| 650 | 
            +
                                query_states,
         | 
| 651 | 
            +
                                key_states,
         | 
| 652 | 
            +
                                value_states,
         | 
| 653 | 
            +
                                cu_seqlens_q=cu_seqlens_q,
         | 
| 654 | 
            +
                                cu_seqlens_k=cu_seqlens_k,
         | 
| 655 | 
            +
                                max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 656 | 
            +
                                max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 657 | 
            +
                                dropout_p=dropout,
         | 
| 658 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 659 | 
            +
                                causal=causal,
         | 
| 660 | 
            +
                                window_size=(self.config.sliding_window, self.config.sliding_window),
         | 
| 661 | 
            +
                            )
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 664 | 
            +
                    else:
         | 
| 665 | 
            +
                        if not use_sliding_windows:
         | 
| 666 | 
            +
                            attn_output = flash_attn_func(
         | 
| 667 | 
            +
                                query_states,
         | 
| 668 | 
            +
                                key_states,
         | 
| 669 | 
            +
                                value_states,
         | 
| 670 | 
            +
                                dropout,
         | 
| 671 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 672 | 
            +
                                causal=causal,
         | 
| 673 | 
            +
                            )
         | 
| 674 | 
            +
                        else:
         | 
| 675 | 
            +
                            attn_output = flash_attn_func(
         | 
| 676 | 
            +
                                query_states,
         | 
| 677 | 
            +
                                key_states,
         | 
| 678 | 
            +
                                value_states,
         | 
| 679 | 
            +
                                dropout,
         | 
| 680 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 681 | 
            +
                                causal=causal,
         | 
| 682 | 
            +
                                window_size=(self.config.sliding_window, self.config.sliding_window),
         | 
| 683 | 
            +
                            )
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                    return attn_output
         | 
| 686 | 
            +
             | 
| 687 | 
            +
                # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
         | 
| 688 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 689 | 
            +
                    batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                    # On the first iteration we need to properly re-create the padding mask
         | 
| 692 | 
            +
                    # by slicing it on the proper place
         | 
| 693 | 
            +
                    if kv_seq_len != attention_mask.shape[-1]:
         | 
| 694 | 
            +
                        attention_mask_num_tokens = attention_mask.shape[-1]
         | 
| 695 | 
            +
                        attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 698 | 
            +
             | 
| 699 | 
            +
                    key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
         | 
| 700 | 
            +
                    value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                    if query_length == kv_seq_len:
         | 
| 703 | 
            +
                        query_layer = index_first_axis(
         | 
| 704 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
         | 
| 705 | 
            +
                        )
         | 
| 706 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 707 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 708 | 
            +
                        indices_q = indices_k
         | 
| 709 | 
            +
                    elif query_length == 1:
         | 
| 710 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 711 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 712 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 713 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 714 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 715 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 716 | 
            +
                    else:
         | 
| 717 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 718 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 719 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    return (
         | 
| 722 | 
            +
                        query_layer,
         | 
| 723 | 
            +
                        key_layer,
         | 
| 724 | 
            +
                        value_layer,
         | 
| 725 | 
            +
                        indices_q,
         | 
| 726 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 727 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 728 | 
            +
                    )
         | 
| 729 | 
            +
             | 
| 730 | 
            +
             | 
| 731 | 
            +
            # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
         | 
| 732 | 
            +
            # TODO @Arthur no longer copied from LLama after static cache
         | 
| 733 | 
            +
            class Phi3SdpaAttention(Phi3Attention):
         | 
| 734 | 
            +
                """
         | 
| 735 | 
            +
                Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 736 | 
            +
                `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 737 | 
            +
                SDPA API.
         | 
| 738 | 
            +
                """
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                # Adapted from Phi3Attention.forward
         | 
| 741 | 
            +
                def forward(
         | 
| 742 | 
            +
                    self,
         | 
| 743 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 744 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 745 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 746 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 747 | 
            +
                    output_attentions: bool = False,
         | 
| 748 | 
            +
                    use_cache: bool = False,
         | 
| 749 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 750 | 
            +
                    if output_attentions:
         | 
| 751 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 752 | 
            +
                        logger.warning_once(
         | 
| 753 | 
            +
                            'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
         | 
| 754 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 755 | 
            +
                        )
         | 
| 756 | 
            +
                        return super().forward(
         | 
| 757 | 
            +
                            hidden_states=hidden_states,
         | 
| 758 | 
            +
                            attention_mask=attention_mask,
         | 
| 759 | 
            +
                            position_ids=position_ids,
         | 
| 760 | 
            +
                            past_key_value=past_key_value,
         | 
| 761 | 
            +
                            output_attentions=output_attentions,
         | 
| 762 | 
            +
                            use_cache=use_cache,
         | 
| 763 | 
            +
                        )
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 766 | 
            +
             | 
| 767 | 
            +
                    qkv = self.qkv_proj(hidden_states)
         | 
| 768 | 
            +
                    query_pos = self.num_heads * self.head_dim
         | 
| 769 | 
            +
                    query_states = qkv[..., :query_pos]
         | 
| 770 | 
            +
                    key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
         | 
| 771 | 
            +
                    value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 774 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 775 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 776 | 
            +
             | 
| 777 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 778 | 
            +
                    if past_key_value is not None:
         | 
| 779 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 780 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 783 | 
            +
             | 
| 784 | 
            +
                    if past_key_value is not None:
         | 
| 785 | 
            +
                        cache_kwargs = {'sin': sin, 'cos': cos}  # Specific to RoPE models
         | 
| 786 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 789 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 790 | 
            +
             | 
| 791 | 
            +
                    if attention_mask is not None:
         | 
| 792 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 793 | 
            +
                            raise ValueError(
         | 
| 794 | 
            +
                                f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
         | 
| 795 | 
            +
                            )
         | 
| 796 | 
            +
             | 
| 797 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 798 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 799 | 
            +
                    if query_states.device.type == 'cuda' and attention_mask is not None:
         | 
| 800 | 
            +
                        query_states = query_states.contiguous()
         | 
| 801 | 
            +
                        key_states = key_states.contiguous()
         | 
| 802 | 
            +
                        value_states = value_states.contiguous()
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 805 | 
            +
                        query_states,
         | 
| 806 | 
            +
                        key_states,
         | 
| 807 | 
            +
                        value_states,
         | 
| 808 | 
            +
                        attn_mask=attention_mask,
         | 
| 809 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 810 | 
            +
                        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
         | 
| 811 | 
            +
                        is_causal=self.is_causal and attention_mask is None and q_len > 1,
         | 
| 812 | 
            +
                    )
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 815 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                    return attn_output, None, past_key_value
         | 
| 820 | 
            +
             | 
| 821 | 
            +
             | 
| 822 | 
            +
            PHI3_ATTENTION_CLASSES = {
         | 
| 823 | 
            +
                'eager': Phi3Attention,
         | 
| 824 | 
            +
                'flash_attention_2': Phi3FlashAttention2,
         | 
| 825 | 
            +
                'sdpa': Phi3SdpaAttention,
         | 
| 826 | 
            +
            }
         | 
| 827 | 
            +
             | 
| 828 | 
            +
             | 
| 829 | 
            +
            class Phi3DecoderLayer(nn.Module):
         | 
| 830 | 
            +
                def __init__(self, config: Phi3Config, layer_idx: int):
         | 
| 831 | 
            +
                    super().__init__()
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                    self.config = config
         | 
| 834 | 
            +
                    self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                    self.mlp = Phi3MLP(config)
         | 
| 837 | 
            +
                    self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 838 | 
            +
             | 
| 839 | 
            +
                    self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
         | 
| 840 | 
            +
                    self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
         | 
| 841 | 
            +
                    self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                def forward(
         | 
| 844 | 
            +
                    self,
         | 
| 845 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 846 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 847 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 848 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 849 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 850 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 851 | 
            +
                    **kwargs,
         | 
| 852 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 853 | 
            +
                    if 'padding_mask' in kwargs:
         | 
| 854 | 
            +
                        warnings.warn(
         | 
| 855 | 
            +
                            'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
         | 
| 856 | 
            +
                        )
         | 
| 857 | 
            +
                    """
         | 
| 858 | 
            +
                    Args:
         | 
| 859 | 
            +
                        hidden_states (`torch.FloatTensor`):
         | 
| 860 | 
            +
                            input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 861 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 862 | 
            +
                            `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
         | 
| 863 | 
            +
                        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
         | 
| 864 | 
            +
                            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
         | 
| 865 | 
            +
                            `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
         | 
| 866 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 867 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 868 | 
            +
                            returned tensors for more detail.
         | 
| 869 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 870 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 871 | 
            +
                            (see `past_key_values`).
         | 
| 872 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 873 | 
            +
                    """
         | 
| 874 | 
            +
             | 
| 875 | 
            +
                    residual = hidden_states
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    # Self Attention
         | 
| 880 | 
            +
                    attn_outputs, self_attn_weights, present_key_value = self.self_attn(
         | 
| 881 | 
            +
                        hidden_states=hidden_states,
         | 
| 882 | 
            +
                        attention_mask=attention_mask,
         | 
| 883 | 
            +
                        position_ids=position_ids,
         | 
| 884 | 
            +
                        past_key_value=past_key_value,
         | 
| 885 | 
            +
                        output_attentions=output_attentions,
         | 
| 886 | 
            +
                        use_cache=use_cache,
         | 
| 887 | 
            +
                    )
         | 
| 888 | 
            +
             | 
| 889 | 
            +
                    hidden_states = residual + self.resid_attn_dropout(attn_outputs)
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    residual = hidden_states
         | 
| 892 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 893 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 894 | 
            +
                    hidden_states = residual + self.resid_mlp_dropout(hidden_states)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                    outputs = (hidden_states,)
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    if output_attentions:
         | 
| 899 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 900 | 
            +
             | 
| 901 | 
            +
                    if use_cache:
         | 
| 902 | 
            +
                        outputs += (present_key_value,)
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                    return outputs
         | 
| 905 | 
            +
             | 
| 906 | 
            +
             | 
| 907 | 
            +
            PHI3_START_DOCSTRING = r"""
         | 
| 908 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 909 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 910 | 
            +
                etc.)
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 913 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 914 | 
            +
                and behavior.
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                Parameters:
         | 
| 917 | 
            +
                    config ([`Phi3Config`]):
         | 
| 918 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 919 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 920 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 921 | 
            +
            """
         | 
| 922 | 
            +
             | 
| 923 | 
            +
             | 
| 924 | 
            +
            @add_start_docstrings(
         | 
| 925 | 
            +
                'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
         | 
| 926 | 
            +
                PHI3_START_DOCSTRING,
         | 
| 927 | 
            +
            )
         | 
| 928 | 
            +
            class Phi3PreTrainedModel(PreTrainedModel):
         | 
| 929 | 
            +
                config_class = Phi3Config
         | 
| 930 | 
            +
                base_model_prefix = 'model'
         | 
| 931 | 
            +
                supports_gradient_checkpointing = True
         | 
| 932 | 
            +
                _no_split_modules = ['Phi3DecoderLayer']
         | 
| 933 | 
            +
                _skip_keys_device_placement = 'past_key_values'
         | 
| 934 | 
            +
                _supports_flash_attn_2 = True
         | 
| 935 | 
            +
                _supports_sdpa = False
         | 
| 936 | 
            +
                _supports_cache_class = True
         | 
| 937 | 
            +
             | 
| 938 | 
            +
                _version = '0.0.5'
         | 
| 939 | 
            +
             | 
| 940 | 
            +
                def _init_weights(self, module):
         | 
| 941 | 
            +
                    std = self.config.initializer_range
         | 
| 942 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 943 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 944 | 
            +
                        if module.bias is not None:
         | 
| 945 | 
            +
                            module.bias.data.zero_()
         | 
| 946 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 947 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 948 | 
            +
                        if module.padding_idx is not None:
         | 
| 949 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 950 | 
            +
             | 
| 951 | 
            +
             | 
| 952 | 
            +
            PHI3_INPUTS_DOCSTRING = r"""
         | 
| 953 | 
            +
                Args:
         | 
| 954 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 955 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 956 | 
            +
                        it.
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 959 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 962 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 963 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 966 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 967 | 
            +
             | 
| 968 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 969 | 
            +
             | 
| 970 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 971 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 972 | 
            +
             | 
| 973 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 974 | 
            +
                        `past_key_values`).
         | 
| 975 | 
            +
             | 
| 976 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 977 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 978 | 
            +
                        information on the default strategy.
         | 
| 979 | 
            +
             | 
| 980 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 981 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 982 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 983 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 984 | 
            +
                        config.n_positions - 1]`.
         | 
| 985 | 
            +
             | 
| 986 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 987 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 988 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 989 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 990 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                        Two formats are allowed:
         | 
| 993 | 
            +
                        - a [`~cache_utils.Cache`] instance;
         | 
| 994 | 
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         | 
| 995 | 
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         | 
| 996 | 
            +
                        cache format.
         | 
| 997 | 
            +
             | 
| 998 | 
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         | 
| 999 | 
            +
                        legacy cache format will be returned.
         | 
| 1000 | 
            +
             | 
| 1001 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 1002 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 1003 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 1004 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 1005 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 1006 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1007 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1008 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1009 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 1010 | 
            +
                        `past_key_values`).
         | 
| 1011 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1012 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 1013 | 
            +
                        tensors for more detail.
         | 
| 1014 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1015 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1016 | 
            +
                        more detail.
         | 
| 1017 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1018 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1019 | 
            +
            """
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
             | 
| 1022 | 
            +
            @add_start_docstrings(
         | 
| 1023 | 
            +
                'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
         | 
| 1024 | 
            +
                PHI3_START_DOCSTRING,
         | 
| 1025 | 
            +
            )
         | 
| 1026 | 
            +
            class Phi3Model(Phi3PreTrainedModel):
         | 
| 1027 | 
            +
                """
         | 
| 1028 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
                Args:
         | 
| 1031 | 
            +
                    config: Phi3Config
         | 
| 1032 | 
            +
                """
         | 
| 1033 | 
            +
             | 
| 1034 | 
            +
                def __init__(self, config: Phi3Config):
         | 
| 1035 | 
            +
                    super().__init__(config)
         | 
| 1036 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 1037 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1038 | 
            +
             | 
| 1039 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 1040 | 
            +
                    self.embed_dropout = nn.Dropout(config.embd_pdrop)
         | 
| 1041 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 1042 | 
            +
                        [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 1043 | 
            +
                    )
         | 
| 1044 | 
            +
                    self._attn_implementation = config._attn_implementation
         | 
| 1045 | 
            +
                    self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                    self.gradient_checkpointing = False
         | 
| 1048 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1049 | 
            +
                    self.post_init()
         | 
| 1050 | 
            +
             | 
| 1051 | 
            +
                def get_input_embeddings(self):
         | 
| 1052 | 
            +
                    return self.embed_tokens
         | 
| 1053 | 
            +
             | 
| 1054 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1055 | 
            +
                    self.embed_tokens = value
         | 
| 1056 | 
            +
             | 
| 1057 | 
            +
                @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
         | 
| 1058 | 
            +
                def forward(
         | 
| 1059 | 
            +
                    self,
         | 
| 1060 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1061 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1062 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1063 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1064 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1065 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1066 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1067 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1068 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1069 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 1070 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1071 | 
            +
                    output_hidden_states = (
         | 
| 1072 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1073 | 
            +
                    )
         | 
| 1074 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1075 | 
            +
             | 
| 1076 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1077 | 
            +
             | 
| 1078 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 1079 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 1080 | 
            +
                        raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
         | 
| 1081 | 
            +
                    elif input_ids is not None:
         | 
| 1082 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 1083 | 
            +
                    elif inputs_embeds is not None:
         | 
| 1084 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 1085 | 
            +
                    else:
         | 
| 1086 | 
            +
                        raise ValueError('You have to specify either input_ids or inputs_embeds')
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
                    past_key_values_length = 0
         | 
| 1089 | 
            +
             | 
| 1090 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 1091 | 
            +
                        if use_cache:
         | 
| 1092 | 
            +
                            logger.warning_once(
         | 
| 1093 | 
            +
                                '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
         | 
| 1094 | 
            +
                            )
         | 
| 1095 | 
            +
                            use_cache = False
         | 
| 1096 | 
            +
             | 
| 1097 | 
            +
                    if use_cache:
         | 
| 1098 | 
            +
                        use_legacy_cache = not isinstance(past_key_values, Cache)
         | 
| 1099 | 
            +
                        if use_legacy_cache:
         | 
| 1100 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 1101 | 
            +
                        past_key_values_length = past_key_values.get_usable_length(seq_length)
         | 
| 1102 | 
            +
             | 
| 1103 | 
            +
                    if position_ids is None:
         | 
| 1104 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 1105 | 
            +
                        position_ids = torch.arange(
         | 
| 1106 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 1107 | 
            +
                        )
         | 
| 1108 | 
            +
                        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 1109 | 
            +
                    else:
         | 
| 1110 | 
            +
                        position_ids = position_ids.view(-1, seq_length).long()
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                    if inputs_embeds is None:
         | 
| 1113 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                    if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
         | 
| 1116 | 
            +
                        is_padding_right = attention_mask[:, -1].sum().item() != batch_size
         | 
| 1117 | 
            +
                        if is_padding_right:
         | 
| 1118 | 
            +
                            raise ValueError(
         | 
| 1119 | 
            +
                                "You are attempting to perform batched generation with padding_side='right'"
         | 
| 1120 | 
            +
                                ' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
         | 
| 1121 | 
            +
                                " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
         | 
| 1122 | 
            +
                            )
         | 
| 1123 | 
            +
             | 
| 1124 | 
            +
                    if self._attn_implementation == 'flash_attention_2':
         | 
| 1125 | 
            +
                        # 2d mask is passed through the layers
         | 
| 1126 | 
            +
                        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
         | 
| 1127 | 
            +
                    else:
         | 
| 1128 | 
            +
                        # 4d mask is passed through the layers
         | 
| 1129 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 1130 | 
            +
                            attention_mask,
         | 
| 1131 | 
            +
                            (batch_size, seq_length),
         | 
| 1132 | 
            +
                            inputs_embeds,
         | 
| 1133 | 
            +
                            past_key_values_length,
         | 
| 1134 | 
            +
                            sliding_window=self.config.sliding_window,
         | 
| 1135 | 
            +
                        )
         | 
| 1136 | 
            +
             | 
| 1137 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1138 | 
            +
             | 
| 1139 | 
            +
                    # decoder layers
         | 
| 1140 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1141 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1142 | 
            +
                    next_decoder_cache = None
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
                    for decoder_layer in self.layers:
         | 
| 1145 | 
            +
                        if output_hidden_states:
         | 
| 1146 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1147 | 
            +
             | 
| 1148 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1149 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1150 | 
            +
                                decoder_layer.__call__,
         | 
| 1151 | 
            +
                                hidden_states,
         | 
| 1152 | 
            +
                                attention_mask,
         | 
| 1153 | 
            +
                                position_ids,
         | 
| 1154 | 
            +
                                past_key_values,
         | 
| 1155 | 
            +
                                output_attentions,
         | 
| 1156 | 
            +
                                use_cache,
         | 
| 1157 | 
            +
                            )
         | 
| 1158 | 
            +
                        else:
         | 
| 1159 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1160 | 
            +
                                hidden_states,
         | 
| 1161 | 
            +
                                attention_mask=attention_mask,
         | 
| 1162 | 
            +
                                position_ids=position_ids,
         | 
| 1163 | 
            +
                                past_key_value=past_key_values,
         | 
| 1164 | 
            +
                                output_attentions=output_attentions,
         | 
| 1165 | 
            +
                                use_cache=use_cache,
         | 
| 1166 | 
            +
                            )
         | 
| 1167 | 
            +
             | 
| 1168 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1169 | 
            +
             | 
| 1170 | 
            +
                        if use_cache:
         | 
| 1171 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
                        if output_attentions:
         | 
| 1174 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1177 | 
            +
             | 
| 1178 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1179 | 
            +
                    if output_hidden_states:
         | 
| 1180 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                    next_cache = None
         | 
| 1183 | 
            +
                    if use_cache:
         | 
| 1184 | 
            +
                        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
         | 
| 1185 | 
            +
                    if not return_dict:
         | 
| 1186 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1187 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1188 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1189 | 
            +
                        past_key_values=next_cache,
         | 
| 1190 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1191 | 
            +
                        attentions=all_self_attns,
         | 
| 1192 | 
            +
                    )
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
             | 
| 1195 | 
            +
            class Phi3ForCausalLM(Phi3PreTrainedModel):
         | 
| 1196 | 
            +
                _tied_weights_keys = ['lm_head.weight']
         | 
| 1197 | 
            +
             | 
| 1198 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
         | 
| 1199 | 
            +
                def __init__(self, config):
         | 
| 1200 | 
            +
                    super().__init__(config)
         | 
| 1201 | 
            +
                    self.model = Phi3Model(config)
         | 
| 1202 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1203 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1204 | 
            +
             | 
| 1205 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1206 | 
            +
                    self.post_init()
         | 
| 1207 | 
            +
             | 
| 1208 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
         | 
| 1209 | 
            +
                def get_input_embeddings(self):
         | 
| 1210 | 
            +
                    return self.model.embed_tokens
         | 
| 1211 | 
            +
             | 
| 1212 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
         | 
| 1213 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1214 | 
            +
                    self.model.embed_tokens = value
         | 
| 1215 | 
            +
             | 
| 1216 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
         | 
| 1217 | 
            +
                def get_output_embeddings(self):
         | 
| 1218 | 
            +
                    return self.lm_head
         | 
| 1219 | 
            +
             | 
| 1220 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
         | 
| 1221 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1222 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1223 | 
            +
             | 
| 1224 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
         | 
| 1225 | 
            +
                def set_decoder(self, decoder):
         | 
| 1226 | 
            +
                    self.model = decoder
         | 
| 1227 | 
            +
             | 
| 1228 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
         | 
| 1229 | 
            +
                def get_decoder(self):
         | 
| 1230 | 
            +
                    return self.model
         | 
| 1231 | 
            +
             | 
| 1232 | 
            +
                # Ignore copy
         | 
| 1233 | 
            +
                @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
         | 
| 1234 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1235 | 
            +
                def forward(
         | 
| 1236 | 
            +
                    self,
         | 
| 1237 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1238 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1239 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1240 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1241 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1242 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1243 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1244 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1245 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1246 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1247 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1248 | 
            +
                    r"""
         | 
| 1249 | 
            +
                    Args:
         | 
| 1250 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1251 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1252 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1253 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1254 | 
            +
             | 
| 1255 | 
            +
                    Returns:
         | 
| 1256 | 
            +
             | 
| 1257 | 
            +
                    Example:
         | 
| 1258 | 
            +
             | 
| 1259 | 
            +
                    ```python
         | 
| 1260 | 
            +
                    >>> from transformers import AutoTokenizer, Phi3ForCausalLM
         | 
| 1261 | 
            +
             | 
| 1262 | 
            +
                    >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
         | 
| 1263 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
         | 
| 1264 | 
            +
             | 
| 1265 | 
            +
                    >>> prompt = "This is an example script ."
         | 
| 1266 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1267 | 
            +
             | 
| 1268 | 
            +
                    >>> # Generate
         | 
| 1269 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1270 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1271 | 
            +
                    'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
         | 
| 1272 | 
            +
                    ```"""
         | 
| 1273 | 
            +
             | 
| 1274 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1275 | 
            +
                    output_hidden_states = (
         | 
| 1276 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1277 | 
            +
                    )
         | 
| 1278 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1279 | 
            +
             | 
| 1280 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1281 | 
            +
                    outputs = self.model(
         | 
| 1282 | 
            +
                        input_ids=input_ids,
         | 
| 1283 | 
            +
                        attention_mask=attention_mask,
         | 
| 1284 | 
            +
                        position_ids=position_ids,
         | 
| 1285 | 
            +
                        past_key_values=past_key_values,
         | 
| 1286 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1287 | 
            +
                        use_cache=use_cache,
         | 
| 1288 | 
            +
                        output_attentions=output_attentions,
         | 
| 1289 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1290 | 
            +
                        return_dict=return_dict,
         | 
| 1291 | 
            +
                    )
         | 
| 1292 | 
            +
             | 
| 1293 | 
            +
                    hidden_states = outputs[0]
         | 
| 1294 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 1295 | 
            +
                    logits = logits.float()
         | 
| 1296 | 
            +
             | 
| 1297 | 
            +
                    loss = None
         | 
| 1298 | 
            +
                    if labels is not None:
         | 
| 1299 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1300 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1301 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1302 | 
            +
                        # Flatten the tokens
         | 
| 1303 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1304 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1305 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1306 | 
            +
                        # Enable model parallelism
         | 
| 1307 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1308 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1309 | 
            +
             | 
| 1310 | 
            +
                    if not return_dict:
         | 
| 1311 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1312 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1313 | 
            +
             | 
| 1314 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1315 | 
            +
                        loss=loss,
         | 
| 1316 | 
            +
                        logits=logits,
         | 
| 1317 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1318 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1319 | 
            +
                        attentions=outputs.attentions,
         | 
| 1320 | 
            +
                    )
         | 
| 1321 | 
            +
             | 
| 1322 | 
            +
                # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
         | 
| 1323 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1324 | 
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         | 
| 1325 | 
            +
                ):
         | 
| 1326 | 
            +
                    if past_key_values is not None:
         | 
| 1327 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1328 | 
            +
                            cache_length = past_key_values.get_seq_length()
         | 
| 1329 | 
            +
                            past_length = past_key_values.seen_tokens
         | 
| 1330 | 
            +
                            max_cache_length = past_key_values.get_max_length()
         | 
| 1331 | 
            +
                        else:
         | 
| 1332 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1333 | 
            +
                            max_cache_length = None
         | 
| 1334 | 
            +
             | 
| 1335 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1336 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1337 | 
            +
                        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
         | 
| 1338 | 
            +
                        # input)
         | 
| 1339 | 
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         | 
| 1340 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1341 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1342 | 
            +
                        # input_ids based on the past_length.
         | 
| 1343 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1344 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1345 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1346 | 
            +
             | 
| 1347 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1348 | 
            +
                        if (
         | 
| 1349 | 
            +
                            max_cache_length is not None
         | 
| 1350 | 
            +
                            and attention_mask is not None
         | 
| 1351 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1352 | 
            +
                        ):
         | 
| 1353 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         | 
| 1354 | 
            +
             | 
| 1355 | 
            +
                    position_ids = kwargs.get('position_ids', None)
         | 
| 1356 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1357 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1358 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1359 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1360 | 
            +
                        if past_key_values:
         | 
| 1361 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1362 | 
            +
             | 
| 1363 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1364 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1365 | 
            +
                        model_inputs = {'inputs_embeds': inputs_embeds}
         | 
| 1366 | 
            +
                    else:
         | 
| 1367 | 
            +
                        model_inputs = {'input_ids': input_ids}
         | 
| 1368 | 
            +
             | 
| 1369 | 
            +
                    model_inputs.update(
         | 
| 1370 | 
            +
                        {
         | 
| 1371 | 
            +
                            'position_ids': position_ids,
         | 
| 1372 | 
            +
                            'past_key_values': past_key_values,
         | 
| 1373 | 
            +
                            'use_cache': kwargs.get('use_cache'),
         | 
| 1374 | 
            +
                            'attention_mask': attention_mask,
         | 
| 1375 | 
            +
                        }
         | 
| 1376 | 
            +
                    )
         | 
| 1377 | 
            +
                    return model_inputs
         | 
| 1378 | 
            +
             | 
| 1379 | 
            +
                @staticmethod
         | 
| 1380 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
         | 
| 1381 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1382 | 
            +
                    reordered_past = ()
         | 
| 1383 | 
            +
                    for layer_past in past_key_values:
         | 
| 1384 | 
            +
                        reordered_past += (
         | 
| 1385 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1386 | 
            +
                        )
         | 
| 1387 | 
            +
                    return reordered_past
         | 
| 1388 | 
            +
             | 
| 1389 | 
            +
             | 
| 1390 | 
            +
            @add_start_docstrings(
         | 
| 1391 | 
            +
                """
         | 
| 1392 | 
            +
                The [`Phi3Model`] with a sequence classification head on top (linear layer).
         | 
| 1393 | 
            +
             | 
| 1394 | 
            +
                [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1395 | 
            +
                (e.g. GPT-2) do.
         | 
| 1396 | 
            +
             | 
| 1397 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1398 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1399 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1400 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1401 | 
            +
                each row of the batch).
         | 
| 1402 | 
            +
                """,
         | 
| 1403 | 
            +
                PHI3_START_DOCSTRING,
         | 
| 1404 | 
            +
            )
         | 
| 1405 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
         | 
| 1406 | 
            +
            class Phi3ForSequenceClassification(Phi3PreTrainedModel):
         | 
| 1407 | 
            +
                def __init__(self, config):
         | 
| 1408 | 
            +
                    super().__init__(config)
         | 
| 1409 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1410 | 
            +
                    self.model = Phi3Model(config)
         | 
| 1411 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1414 | 
            +
                    self.post_init()
         | 
| 1415 | 
            +
             | 
| 1416 | 
            +
                def get_input_embeddings(self):
         | 
| 1417 | 
            +
                    return self.model.embed_tokens
         | 
| 1418 | 
            +
             | 
| 1419 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1420 | 
            +
                    self.model.embed_tokens = value
         | 
| 1421 | 
            +
             | 
| 1422 | 
            +
                @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
         | 
| 1423 | 
            +
                def forward(
         | 
| 1424 | 
            +
                    self,
         | 
| 1425 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1426 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1427 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1428 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1429 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1430 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1431 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1432 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1433 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1434 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1435 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1436 | 
            +
                    r"""
         | 
| 1437 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1438 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1439 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1440 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1441 | 
            +
                    """
         | 
| 1442 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
                    model_outputs = self.model(
         | 
| 1445 | 
            +
                        input_ids,
         | 
| 1446 | 
            +
                        attention_mask=attention_mask,
         | 
| 1447 | 
            +
                        position_ids=position_ids,
         | 
| 1448 | 
            +
                        past_key_values=past_key_values,
         | 
| 1449 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1450 | 
            +
                        use_cache=use_cache,
         | 
| 1451 | 
            +
                        output_attentions=output_attentions,
         | 
| 1452 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1453 | 
            +
                        return_dict=return_dict,
         | 
| 1454 | 
            +
                    )
         | 
| 1455 | 
            +
                    hidden_states = model_outputs[0]
         | 
| 1456 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1457 | 
            +
             | 
| 1458 | 
            +
                    if input_ids is not None:
         | 
| 1459 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1460 | 
            +
                    else:
         | 
| 1461 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1462 | 
            +
             | 
| 1463 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1464 | 
            +
                        raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
         | 
| 1465 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1466 | 
            +
                        sequence_lengths = -1
         | 
| 1467 | 
            +
                    else:
         | 
| 1468 | 
            +
                        if input_ids is not None:
         | 
| 1469 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1470 | 
            +
                            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1471 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1472 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1473 | 
            +
                        else:
         | 
| 1474 | 
            +
                            sequence_lengths = -1
         | 
| 1475 | 
            +
             | 
| 1476 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1477 | 
            +
             | 
| 1478 | 
            +
                    loss = None
         | 
| 1479 | 
            +
                    if labels is not None:
         | 
| 1480 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1481 | 
            +
                        if self.config.problem_type is None:
         | 
| 1482 | 
            +
                            if self.num_labels == 1:
         | 
| 1483 | 
            +
                                self.config.problem_type = 'regression'
         | 
| 1484 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1485 | 
            +
                                self.config.problem_type = 'single_label_classification'
         | 
| 1486 | 
            +
                            else:
         | 
| 1487 | 
            +
                                self.config.problem_type = 'multi_label_classification'
         | 
| 1488 | 
            +
             | 
| 1489 | 
            +
                        if self.config.problem_type == 'regression':
         | 
| 1490 | 
            +
                            loss_fct = MSELoss()
         | 
| 1491 | 
            +
                            if self.num_labels == 1:
         | 
| 1492 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1493 | 
            +
                            else:
         | 
| 1494 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1495 | 
            +
                        elif self.config.problem_type == 'single_label_classification':
         | 
| 1496 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1497 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1498 | 
            +
                        elif self.config.problem_type == 'multi_label_classification':
         | 
| 1499 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1500 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1501 | 
            +
                    if not return_dict:
         | 
| 1502 | 
            +
                        output = (pooled_logits,) + model_outputs[1:]
         | 
| 1503 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1504 | 
            +
             | 
| 1505 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1506 | 
            +
                        loss=loss,
         | 
| 1507 | 
            +
                        logits=pooled_logits,
         | 
| 1508 | 
            +
                        past_key_values=model_outputs.past_key_values,
         | 
| 1509 | 
            +
                        hidden_states=model_outputs.hidden_states,
         | 
| 1510 | 
            +
                        attentions=model_outputs.attentions,
         | 
| 1511 | 
            +
                    )
         | 
| 1512 | 
            +
             | 
| 1513 | 
            +
             | 
| 1514 | 
            +
            @add_start_docstrings(
         | 
| 1515 | 
            +
                """
         | 
| 1516 | 
            +
                [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
         | 
| 1517 | 
            +
                Named-Entity-Recognition (NER) tasks.
         | 
| 1518 | 
            +
                """,
         | 
| 1519 | 
            +
                PHI3_START_DOCSTRING,
         | 
| 1520 | 
            +
            )
         | 
| 1521 | 
            +
            # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
         | 
| 1522 | 
            +
            class Phi3ForTokenClassification(Phi3PreTrainedModel):
         | 
| 1523 | 
            +
                def __init__(self, config: Phi3Config):
         | 
| 1524 | 
            +
                    super().__init__(config)
         | 
| 1525 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1526 | 
            +
             | 
| 1527 | 
            +
                    self.model = Phi3Model(config)
         | 
| 1528 | 
            +
                    if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
         | 
| 1529 | 
            +
                        classifier_dropout = config.classifier_dropout
         | 
| 1530 | 
            +
                    elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
         | 
| 1531 | 
            +
                        classifier_dropout = config.hidden_dropout
         | 
| 1532 | 
            +
                    else:
         | 
| 1533 | 
            +
                        classifier_dropout = 0.1
         | 
| 1534 | 
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         | 
| 1535 | 
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 1536 | 
            +
             | 
| 1537 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1538 | 
            +
                    self.post_init()
         | 
| 1539 | 
            +
             | 
| 1540 | 
            +
                @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
         | 
| 1541 | 
            +
                @add_code_sample_docstrings(
         | 
| 1542 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1543 | 
            +
                    output_type=TokenClassifierOutput,
         | 
| 1544 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1545 | 
            +
                )
         | 
| 1546 | 
            +
                def forward(
         | 
| 1547 | 
            +
                    self,
         | 
| 1548 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 1549 | 
            +
                    past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         | 
| 1550 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1551 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 1552 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 1553 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1554 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1555 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1556 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1557 | 
            +
                    **deprecated_arguments,
         | 
| 1558 | 
            +
                ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
         | 
| 1559 | 
            +
                    r"""
         | 
| 1560 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1561 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1562 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1563 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1564 | 
            +
                    """
         | 
| 1565 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1566 | 
            +
             | 
| 1567 | 
            +
                    model_outputs = self.model(
         | 
| 1568 | 
            +
                        input_ids,
         | 
| 1569 | 
            +
                        past_key_values=past_key_values,
         | 
| 1570 | 
            +
                        attention_mask=attention_mask,
         | 
| 1571 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1572 | 
            +
                        use_cache=use_cache,
         | 
| 1573 | 
            +
                        output_attentions=output_attentions,
         | 
| 1574 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1575 | 
            +
                        return_dict=return_dict,
         | 
| 1576 | 
            +
                    )
         | 
| 1577 | 
            +
             | 
| 1578 | 
            +
                    hidden_states = model_outputs[0]
         | 
| 1579 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 1580 | 
            +
                    logits = self.classifier(hidden_states)
         | 
| 1581 | 
            +
             | 
| 1582 | 
            +
                    loss = None
         | 
| 1583 | 
            +
                    if labels is not None:
         | 
| 1584 | 
            +
                        # move labels to correct device to enable model parallelism
         | 
| 1585 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1586 | 
            +
                        batch_size, seq_length = labels.shape
         | 
| 1587 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1588 | 
            +
                        loss = loss_fct(
         | 
| 1589 | 
            +
                            logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
         | 
| 1590 | 
            +
                        )
         | 
| 1591 | 
            +
             | 
| 1592 | 
            +
                    if not return_dict:
         | 
| 1593 | 
            +
                        output = (logits,) + model_outputs[2:]
         | 
| 1594 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1595 | 
            +
             | 
| 1596 | 
            +
                    return TokenClassifierOutput(
         | 
| 1597 | 
            +
                        loss=loss,
         | 
| 1598 | 
            +
                        logits=logits,
         | 
| 1599 | 
            +
                        hidden_states=model_outputs.hidden_states,
         | 
| 1600 | 
            +
                        attentions=model_outputs.attentions,
         | 
| 1601 | 
            +
                    )
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,41 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<img>",
         | 
| 4 | 
            +
                "</img>",
         | 
| 5 | 
            +
                "<IMG_CONTEXT>",
         | 
| 6 | 
            +
                "<quad>",
         | 
| 7 | 
            +
                "</quad>",
         | 
| 8 | 
            +
                "<ref>",
         | 
| 9 | 
            +
                "</ref>",
         | 
| 10 | 
            +
                "<box>",
         | 
| 11 | 
            +
                "</box>"
         | 
| 12 | 
            +
              ],
         | 
| 13 | 
            +
              "bos_token": {
         | 
| 14 | 
            +
                "content": "<s>",
         | 
| 15 | 
            +
                "lstrip": false,
         | 
| 16 | 
            +
                "normalized": false,
         | 
| 17 | 
            +
                "rstrip": false,
         | 
| 18 | 
            +
                "single_word": false
         | 
| 19 | 
            +
              },
         | 
| 20 | 
            +
              "eos_token": {
         | 
| 21 | 
            +
                "content": "</s>",
         | 
| 22 | 
            +
                "lstrip": false,
         | 
| 23 | 
            +
                "normalized": false,
         | 
| 24 | 
            +
                "rstrip": true,
         | 
| 25 | 
            +
                "single_word": false
         | 
| 26 | 
            +
              },
         | 
| 27 | 
            +
              "pad_token": {
         | 
| 28 | 
            +
                "content": "</s>",
         | 
| 29 | 
            +
                "lstrip": false,
         | 
| 30 | 
            +
                "normalized": false,
         | 
| 31 | 
            +
                "rstrip": true,
         | 
| 32 | 
            +
                "single_word": false
         | 
| 33 | 
            +
              },
         | 
| 34 | 
            +
              "unk_token": {
         | 
| 35 | 
            +
                "content": "<unk>",
         | 
| 36 | 
            +
                "lstrip": false,
         | 
| 37 | 
            +
                "normalized": false,
         | 
| 38 | 
            +
                "rstrip": false,
         | 
| 39 | 
            +
                "single_word": false
         | 
| 40 | 
            +
              }
         | 
| 41 | 
            +
            }
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
         | 
| 3 | 
            +
            size 499723
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,214 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": true,
         | 
| 3 | 
            +
              "add_eos_token": false,
         | 
| 4 | 
            +
              "added_tokens_decoder": {
         | 
| 5 | 
            +
                "0": {
         | 
| 6 | 
            +
                  "content": "<unk>",
         | 
| 7 | 
            +
                  "lstrip": false,
         | 
| 8 | 
            +
                  "normalized": false,
         | 
| 9 | 
            +
                  "rstrip": false,
         | 
| 10 | 
            +
                  "single_word": false,
         | 
| 11 | 
            +
                  "special": true
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "1": {
         | 
| 14 | 
            +
                  "content": "<s>",
         | 
| 15 | 
            +
                  "lstrip": false,
         | 
| 16 | 
            +
                  "normalized": false,
         | 
| 17 | 
            +
                  "rstrip": false,
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "special": true
         | 
| 20 | 
            +
                },
         | 
| 21 | 
            +
                "2": {
         | 
| 22 | 
            +
                  "content": "</s>",
         | 
| 23 | 
            +
                  "lstrip": false,
         | 
| 24 | 
            +
                  "normalized": false,
         | 
| 25 | 
            +
                  "rstrip": true,
         | 
| 26 | 
            +
                  "single_word": false,
         | 
| 27 | 
            +
                  "special": true
         | 
| 28 | 
            +
                },
         | 
| 29 | 
            +
                "32000": {
         | 
| 30 | 
            +
                  "content": "<|endoftext|>",
         | 
| 31 | 
            +
                  "lstrip": false,
         | 
| 32 | 
            +
                  "normalized": false,
         | 
| 33 | 
            +
                  "rstrip": false,
         | 
| 34 | 
            +
                  "single_word": false,
         | 
| 35 | 
            +
                  "special": true
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "32001": {
         | 
| 38 | 
            +
                  "content": "<|assistant|>",
         | 
| 39 | 
            +
                  "lstrip": false,
         | 
| 40 | 
            +
                  "normalized": false,
         | 
| 41 | 
            +
                  "rstrip": true,
         | 
| 42 | 
            +
                  "single_word": false,
         | 
| 43 | 
            +
                  "special": true
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "32002": {
         | 
| 46 | 
            +
                  "content": "<|placeholder1|>",
         | 
| 47 | 
            +
                  "lstrip": false,
         | 
| 48 | 
            +
                  "normalized": false,
         | 
| 49 | 
            +
                  "rstrip": true,
         | 
| 50 | 
            +
                  "single_word": false,
         | 
| 51 | 
            +
                  "special": true
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                "32003": {
         | 
| 54 | 
            +
                  "content": "<|placeholder2|>",
         | 
| 55 | 
            +
                  "lstrip": false,
         | 
| 56 | 
            +
                  "normalized": false,
         | 
| 57 | 
            +
                  "rstrip": true,
         | 
| 58 | 
            +
                  "single_word": false,
         | 
| 59 | 
            +
                  "special": true
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "32004": {
         | 
| 62 | 
            +
                  "content": "<|placeholder3|>",
         | 
| 63 | 
            +
                  "lstrip": false,
         | 
| 64 | 
            +
                  "normalized": false,
         | 
| 65 | 
            +
                  "rstrip": true,
         | 
| 66 | 
            +
                  "single_word": false,
         | 
| 67 | 
            +
                  "special": true
         | 
| 68 | 
            +
                },
         | 
| 69 | 
            +
                "32005": {
         | 
| 70 | 
            +
                  "content": "<|placeholder4|>",
         | 
| 71 | 
            +
                  "lstrip": false,
         | 
| 72 | 
            +
                  "normalized": false,
         | 
| 73 | 
            +
                  "rstrip": true,
         | 
| 74 | 
            +
                  "single_word": false,
         | 
| 75 | 
            +
                  "special": true
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                "32006": {
         | 
| 78 | 
            +
                  "content": "<|system|>",
         | 
| 79 | 
            +
                  "lstrip": false,
         | 
| 80 | 
            +
                  "normalized": false,
         | 
| 81 | 
            +
                  "rstrip": true,
         | 
| 82 | 
            +
                  "single_word": false,
         | 
| 83 | 
            +
                  "special": true
         | 
| 84 | 
            +
                },
         | 
| 85 | 
            +
                "32007": {
         | 
| 86 | 
            +
                  "content": "<|end|>",
         | 
| 87 | 
            +
                  "lstrip": false,
         | 
| 88 | 
            +
                  "normalized": false,
         | 
| 89 | 
            +
                  "rstrip": true,
         | 
| 90 | 
            +
                  "single_word": false,
         | 
| 91 | 
            +
                  "special": true
         | 
| 92 | 
            +
                },
         | 
| 93 | 
            +
                "32008": {
         | 
| 94 | 
            +
                  "content": "<|placeholder5|>",
         | 
| 95 | 
            +
                  "lstrip": false,
         | 
| 96 | 
            +
                  "normalized": false,
         | 
| 97 | 
            +
                  "rstrip": true,
         | 
| 98 | 
            +
                  "single_word": false,
         | 
| 99 | 
            +
                  "special": true
         | 
| 100 | 
            +
                },
         | 
| 101 | 
            +
                "32009": {
         | 
| 102 | 
            +
                  "content": "<|placeholder6|>",
         | 
| 103 | 
            +
                  "lstrip": false,
         | 
| 104 | 
            +
                  "normalized": false,
         | 
| 105 | 
            +
                  "rstrip": true,
         | 
| 106 | 
            +
                  "single_word": false,
         | 
| 107 | 
            +
                  "special": true
         | 
| 108 | 
            +
                },
         | 
| 109 | 
            +
                "32010": {
         | 
| 110 | 
            +
                  "content": "<|user|>",
         | 
| 111 | 
            +
                  "lstrip": false,
         | 
| 112 | 
            +
                  "normalized": false,
         | 
| 113 | 
            +
                  "rstrip": true,
         | 
| 114 | 
            +
                  "single_word": false,
         | 
| 115 | 
            +
                  "special": true
         | 
| 116 | 
            +
                },
         | 
| 117 | 
            +
                "32011": {
         | 
| 118 | 
            +
                  "content": "<img>",
         | 
| 119 | 
            +
                  "lstrip": false,
         | 
| 120 | 
            +
                  "normalized": false,
         | 
| 121 | 
            +
                  "rstrip": false,
         | 
| 122 | 
            +
                  "single_word": false,
         | 
| 123 | 
            +
                  "special": true
         | 
| 124 | 
            +
                },
         | 
| 125 | 
            +
                "32012": {
         | 
| 126 | 
            +
                  "content": "</img>",
         | 
| 127 | 
            +
                  "lstrip": false,
         | 
| 128 | 
            +
                  "normalized": false,
         | 
| 129 | 
            +
                  "rstrip": false,
         | 
| 130 | 
            +
                  "single_word": false,
         | 
| 131 | 
            +
                  "special": true
         | 
| 132 | 
            +
                },
         | 
| 133 | 
            +
                "32013": {
         | 
| 134 | 
            +
                  "content": "<IMG_CONTEXT>",
         | 
| 135 | 
            +
                  "lstrip": false,
         | 
| 136 | 
            +
                  "normalized": false,
         | 
| 137 | 
            +
                  "rstrip": false,
         | 
| 138 | 
            +
                  "single_word": false,
         | 
| 139 | 
            +
                  "special": true
         | 
| 140 | 
            +
                },
         | 
| 141 | 
            +
                "32014": {
         | 
| 142 | 
            +
                  "content": "<quad>",
         | 
| 143 | 
            +
                  "lstrip": false,
         | 
| 144 | 
            +
                  "normalized": false,
         | 
| 145 | 
            +
                  "rstrip": false,
         | 
| 146 | 
            +
                  "single_word": false,
         | 
| 147 | 
            +
                  "special": true
         | 
| 148 | 
            +
                },
         | 
| 149 | 
            +
                "32015": {
         | 
| 150 | 
            +
                  "content": "</quad>",
         | 
| 151 | 
            +
                  "lstrip": false,
         | 
| 152 | 
            +
                  "normalized": false,
         | 
| 153 | 
            +
                  "rstrip": false,
         | 
| 154 | 
            +
                  "single_word": false,
         | 
| 155 | 
            +
                  "special": true
         | 
| 156 | 
            +
                },
         | 
| 157 | 
            +
                "32016": {
         | 
| 158 | 
            +
                  "content": "<ref>",
         | 
| 159 | 
            +
                  "lstrip": false,
         | 
| 160 | 
            +
                  "normalized": false,
         | 
| 161 | 
            +
                  "rstrip": false,
         | 
| 162 | 
            +
                  "single_word": false,
         | 
| 163 | 
            +
                  "special": true
         | 
| 164 | 
            +
                },
         | 
| 165 | 
            +
                "32017": {
         | 
| 166 | 
            +
                  "content": "</ref>",
         | 
| 167 | 
            +
                  "lstrip": false,
         | 
| 168 | 
            +
                  "normalized": false,
         | 
| 169 | 
            +
                  "rstrip": false,
         | 
| 170 | 
            +
                  "single_word": false,
         | 
| 171 | 
            +
                  "special": true
         | 
| 172 | 
            +
                },
         | 
| 173 | 
            +
                "32018": {
         | 
| 174 | 
            +
                  "content": "<box>",
         | 
| 175 | 
            +
                  "lstrip": false,
         | 
| 176 | 
            +
                  "normalized": false,
         | 
| 177 | 
            +
                  "rstrip": false,
         | 
| 178 | 
            +
                  "single_word": false,
         | 
| 179 | 
            +
                  "special": true
         | 
| 180 | 
            +
                },
         | 
| 181 | 
            +
                "32019": {
         | 
| 182 | 
            +
                  "content": "</box>",
         | 
| 183 | 
            +
                  "lstrip": false,
         | 
| 184 | 
            +
                  "normalized": false,
         | 
| 185 | 
            +
                  "rstrip": false,
         | 
| 186 | 
            +
                  "single_word": false,
         | 
| 187 | 
            +
                  "special": true
         | 
| 188 | 
            +
                }
         | 
| 189 | 
            +
              },
         | 
| 190 | 
            +
              "additional_special_tokens": [
         | 
| 191 | 
            +
                "<img>",
         | 
| 192 | 
            +
                "</img>",
         | 
| 193 | 
            +
                "<IMG_CONTEXT>",
         | 
| 194 | 
            +
                "<quad>",
         | 
| 195 | 
            +
                "</quad>",
         | 
| 196 | 
            +
                "<ref>",
         | 
| 197 | 
            +
                "</ref>",
         | 
| 198 | 
            +
                "<box>",
         | 
| 199 | 
            +
                "</box>"
         | 
| 200 | 
            +
              ],
         | 
| 201 | 
            +
              "bos_token": "<s>",
         | 
| 202 | 
            +
              "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
         | 
| 203 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 204 | 
            +
              "eos_token": "</s>",
         | 
| 205 | 
            +
              "legacy": false,
         | 
| 206 | 
            +
              "model_max_length": 8192,
         | 
| 207 | 
            +
              "pad_token": "</s>",
         | 
| 208 | 
            +
              "padding_side": "right",
         | 
| 209 | 
            +
              "sp_model_kwargs": {},
         | 
| 210 | 
            +
              "spaces_between_special_tokens": false,
         | 
| 211 | 
            +
              "tokenizer_class": "LlamaTokenizer",
         | 
| 212 | 
            +
              "unk_token": "<unk>",
         | 
| 213 | 
            +
              "use_default_system_prompt": false
         | 
| 214 | 
            +
            }
         | 

