Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -499,7 +499,7 @@ print(sess.response.text)
|
|
| 499 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 500 |
|
| 501 |
```shell
|
| 502 |
-
lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-2B-V1-5 --
|
| 503 |
```
|
| 504 |
|
| 505 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
@@ -516,7 +516,7 @@ from openai import OpenAI
|
|
| 516 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 517 |
model_name = client.models.list().data[0].id
|
| 518 |
response = client.chat.completions.create(
|
| 519 |
-
model=
|
| 520 |
messages=[{
|
| 521 |
'role':
|
| 522 |
'user',
|
|
@@ -546,7 +546,7 @@ TODO
|
|
| 546 |
|
| 547 |
## License
|
| 548 |
|
| 549 |
-
This project is released under the MIT license, while
|
| 550 |
|
| 551 |
## Citation
|
| 552 |
|
|
|
|
| 499 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 500 |
|
| 501 |
```shell
|
| 502 |
+
lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-2B-V1-5 --backend turbomind --server-port 23333
|
| 503 |
```
|
| 504 |
|
| 505 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
|
| 516 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 517 |
model_name = client.models.list().data[0].id
|
| 518 |
response = client.chat.completions.create(
|
| 519 |
+
model=model_name,
|
| 520 |
messages=[{
|
| 521 |
'role':
|
| 522 |
'user',
|
|
|
|
| 546 |
|
| 547 |
## License
|
| 548 |
|
| 549 |
+
This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
|
| 550 |
|
| 551 |
## Citation
|
| 552 |
|