import math import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from functools import partial from einops import rearrange from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from typing import Optional, Tuple, Union, Dict from functools import partial, reduce from PIL import Image from torch import nn from transformers.image_processing_utils import BatchFeature, get_size_dict from transformers.image_transforms import ( convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format, ) from transformers.image_utils import ( ChannelDimension, PILImageResampling, to_numpy_array, ) from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func from flash_attn.bert_padding import unpad_input, pad_input class FlashAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None if unpadded: (nnz, 3, h, d) key_padding_mask: a bool tensor of shape (B, S) """ assert not need_weights assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_attn_varlen_qkvpacked_func( x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) return output, None # -------------------------------------------------------- # 2D sine-cosine position embedding # References: # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py # MoCo v3: https://github.com/facebookresearch/moco-v3 # -------------------------------------------------------- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): """ t_size: int of the temporal size return: pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) """ grid_t = np.arange(t_size, dtype=np.float32) pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[0] ) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[1] ) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb # -------------------------------------------------------- # 3D sine-cosine position embedding # References: # MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py # -------------------------------------------------------- def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False): """ grid_size: int of the grid height and width t_size: int of the temporal size return: pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ assert embed_dim % 4 == 0 embed_dim_spatial = embed_dim // 4 * 3 embed_dim_temporal = embed_dim // 4 # spatial grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( embed_dim_spatial, grid ) # temporal grid_t = np.arange(t_size, dtype=np.float32) pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( embed_dim_temporal, grid_t ) # concate: [T, H, W] order pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] pos_embed_temporal = np.repeat( pos_embed_temporal, grid_size**2, axis=1 ) # [T, H*W, D // 4] pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] pos_embed_spatial = np.repeat( pos_embed_spatial, t_size, axis=0 ) # [T, H*W, D // 4 * 3] pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D] if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): super().__init__() self.inplace = inplace self.weight = nn.Parameter(init_values * torch.ones(dim)) self.force_fp32 = force_fp32 @torch.cuda.amp.autocast(enabled=False) def forward(self, x): if self.force_fp32: output_type = x.dtype out = x.float().mul_(self.weight.float()) if self.inplace else x.float() * self.weight.float() return out.to(dtype=output_type) else: out = x.mul_(self.weight) if self.inplace else x * self.weight return out class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.use_flash_attn = use_flash_attn if use_flash_attn: self.causal = causal self.inner_attn = FlashAttention(attention_dropout=attn_drop) self.qk_normalization = qk_normalization self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.use_fused_rmsnorm = use_fused_rmsnorm def _naive_attn(self, x): B, N, C = x.shape # print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated()) qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.qk_normalization: B_, H_, N_, D_ = q.shape q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) attn = ((q * self.scale) @ k.transpose(-2, -1)) # attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16 attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated()) x = (attn @ v).transpose(1, 2).reshape(B, N, C) # print(f"\033[31m这{x.device}是{self.proj.weight.device} {self.proj.bias.device}\033[0m") # print(f"\033[31m类型{x.dtype}是{self.proj.weight.dtype} {self.proj.bias.dtype}\033[0m") x = self.proj(x) x = self.proj_drop(x) return x def _flash_attn(self, x, key_padding_mask=None, need_weights=False): qkv = self.qkv(x) qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) if self.qk_normalization: q, k, v = qkv.unbind(2) if self.use_fused_rmsnorm: q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) else: q = self.q_norm(q.flatten(-2, -1)).view(q.shape) k = self.k_norm(k.flatten(-2, -1)).view(k.shape) qkv = torch.stack([q, k, v], dim=2) context, _ = self.inner_attn( qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal ) outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) outs = self.proj_drop(outs) return outs def forward(self, x): x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) return x class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = to_2tuple(bias) drop_probs = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, use_fused_rmsnorm=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, qk_normalization=qk_normalization, use_fused_rmsnorm=use_fused_rmsnorm) self.ls1 = LayerScale(dim, init_values=init_values, force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if use_fused_mlp: raise NotImplementedError self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) else: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values, force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.with_cp = with_cp self.use_fused_rmsnorm = use_fused_rmsnorm def forward(self, x, residual=None): def _inner_forward(x, residual=None): if self.use_fused_rmsnorm: x, residual = self.norm1(x, residual) x = self.drop_path1(self.ls1(self.attn(x))) x, residual = self.norm2(x, residual) x = self.drop_path2(self.ls2(self.mlp(x))) return x, residual else: assert residual is None x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x if self.with_cp: # print(f"\033[31m use_checkpoint [0m") return checkpoint.checkpoint(_inner_forward, x, residual) else: return _inner_forward(x, residual=residual) class PatchEmbed(nn.Module): """ 3D Image to Patch Embedding """ def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=8, tubelet_size=1, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = ( num_frames // tubelet_size, img_size[0] // patch_size[0], img_size[1] // patch_size[1] ) # (T, H, W) self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] self.num_img_patches = self.grid_size[1] * self.grid_size[2] self.proj = nn.Conv3d( in_channels=in_chans, out_channels=embed_dim, kernel_size=(tubelet_size, patch_size[0], patch_size[1]), stride=(tubelet_size, patch_size[0], patch_size[1]) ) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): x = self.proj(x) x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C x = self.norm(x) return x class PretrainVisionTransformer_clean(nn.Module): def __init__( self, in_chans: int = 3, patch_size: int = 14, img_size: int = 224, qkv_bias: bool = False, # follow internvl_clip to set False drop_path_rate: float = 0.25, # may need ablation embed_dim: int = 1408, num_heads: int = 16, mlp_ratio: float = 48/11, init_values: float = 1e-5, # may need ablation qk_normalization: bool = True, depth: int = 40, use_flash_attn: bool = True, use_fused_rmsnorm: bool = True, use_fused_mlp: bool = True, fused_mlp_heuristic: int = 1, attn_pool_num_heads: int = 16, clip_embed_dim: int = 768, layerscale_no_force_fp32: bool = False, # whether True for training? num_frames: int = 8, tubelet_size: int = 1, sep_pos_embed: bool = False, sep_image_video_pos_embed: bool = False, use_checkpoint: bool = False, checkpoint_num: int = 0, # for unmasked teacher x_vis_return_idx=-1, x_vis_only=False ): super().__init__() self.num_frames = num_frames self.tubelet_size = tubelet_size # assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, f'use_flash_attn:{use_flash_attn}, use_fused_rmsnorm{use_fused_rmsnorm} and use_fused_mlp{use_fused_mlp} should be consistent' self.use_flash_attn = use_flash_attn self.embed_dim = embed_dim print(f"Origin depth: {depth}") depth = depth + x_vis_return_idx + 1 print(f"New depth: {depth}") self.depth = depth self.x_vis_only = x_vis_only if use_fused_rmsnorm: raise NotImplementedError norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) else: norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) self.norm_layer_for_blocks = norm_layer_for_blocks self.patch_embed = PatchEmbed( img_size, patch_size, in_chans, embed_dim, num_frames=num_frames, tubelet_size=tubelet_size, ) num_patches = self.patch_embed.num_patches num_img_patches = self.patch_embed.num_img_patches # print(f"num_patches: {num_patches}, num_img_patches: {num_img_patches}") self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17 self.sep_pos_embed = sep_pos_embed self.sep_image_video_pos_embed = sep_image_video_pos_embed if sep_pos_embed: raise NotImplementedError else: if sep_image_video_pos_embed: print("Use separate position embedding, for image and video we use different pos_embed.") self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) else: print("Use joint position embedding, for image and video we use same pos_embed.") self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # choose which layer to use checkpoint with_cp_list = [False] * depth if use_checkpoint: for idx in range(depth): if idx < checkpoint_num: with_cp_list[idx] = True print(f"Droppath rate: {dpr}") print(f"Checkpoint list: {with_cp_list}") self.blocks = nn.ModuleList([ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer_for_blocks, drop_path=dpr[i], init_values=init_values, attn_drop=0., use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, fused_mlp_heuristic=fused_mlp_heuristic, with_cp=with_cp_list[i], qk_normalization=qk_normalization, layerscale_no_force_fp32=layerscale_no_force_fp32, use_fused_rmsnorm=use_fused_rmsnorm) for i in range(depth)]) if not self.x_vis_only: raise NotImplementedError self.init_pos_embed() trunc_normal_(self.cls_token, std=.02) # NOTE 对chat没用,都要加载预训练的 self.apply(self._init_weights) self.fix_init_weight() def init_pos_embed(self): print("Init pos_embed from sincos pos_embed") if self.sep_pos_embed: raise NotImplementedError else: pos_embed = get_3d_sincos_pos_embed( self.pos_embed.shape[-1], self.patch_embed.grid_size[1], # height & weight self.patch_embed.grid_size[0], # t_size cls_token=True ) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) if self.sep_image_video_pos_embed: img_pos_embed = get_3d_sincos_pos_embed( self.pos_embed.shape[-1], self.patch_embed.grid_size[1], # height & weight 1, cls_token=True ) self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) @property def dtype(self): return self.patch_embed.proj.weight.dtype def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return { 'pos_embed', 'pos_embed_spatial', 'pos_embed_temporal', 'pos_embed_cls', 'img_pos_embed', 'cls_token' } # @torch.cuda.amp.autocast(enabled=False) def forward(self, x, mask=None, use_image=False): x = self.patch_embed(x.type(self.dtype)) # print(f"x.shape: {x.shape} x.dtype: {x.dtype}, model.dtype: {self.dtype}") B, T, L, C = x.shape # T: temporal; L: spatial x = x.view([B, T * L, C]) # append cls token cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add pos_embed if self.sep_pos_embed: raise NotImplementedError else: if use_image: if self.sep_image_video_pos_embed: pos_embed = self.img_pos_embed else: # (1, num_img_patches + 1, embed_dim) # print('origin pos_embed.shape:', self.pos_embed.shape) cls_pos_embed = self.pos_embed[:, 0:1, :] # print('cls_pos_embed.shape:', cls_pos_embed.shape) img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) # print('img_pos_embed.shape:', img_pos_embed.shape) pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1) # print('final img_pos_embed.shape:', pos_embed.shape) else: pos_embed = self.pos_embed # print("pos_embed.shape:", pos_embed.shape) x = x + pos_embed # mask tokens, ~mask means visible if mask is not None: x = x[~mask].reshape(B, -1, C) else: x = x.reshape(B, -1, C) residual = None for idx, blk in enumerate(self.blocks): if isinstance(x, tuple) and len(x) == 2: x, residual = x x = blk(x, residual=residual) if isinstance(x, tuple) and len(x) == 2: x, residual = x if residual is not None: x = x + residual x_vis = x if self.x_vis_only: return x_vis else: x_pool_vis = self.clip_projector(x_vis) return x_vis, x_pool_vis, None, None class InternVideo2ImageProcessor: def __init__(self, image_mean=(0.485, 0.456, 0.406), image_std=(0.229, 0.224, 0.225), size=(224, 224), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST): crop_size = crop_size if crop_size is not None else {"height": size[0], "width": size[1]} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.image_mean = image_mean self.image_std = image_std self.size = size self.resample = resample self.rescale_factor = rescale_factor self.data_format = data_format self.crop_size = crop_size def preprocess(self, images, return_tensors, target_size=None): if isinstance(images, Image.Image): images = [images] else: # to adapt video data images = [to_numpy_array(image) for image in images] assert isinstance(images, list) if target_size is None: target_size = self.size transforms = [ convert_to_rgb, to_numpy_array, partial(resize, size=target_size, resample=self.resample, data_format=self.data_format), partial(rescale, scale=self.rescale_factor, data_format=self.data_format), partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format), partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format), ] images = reduce(lambda x, f: [*map(f, x)], transforms, images) data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) class InternVideo2VisionConfig: model_type = "internvideo2_vision_model" def __init__( self, num_frames=4, hidden_size=1408, num_hidden_layers=40, num_attention_heads=16, num_channels=3, image_size=224, patch_size=14, x_vis_return_idx=-2, sep_image_video_pos_embed=True, use_checkpoint=True, checkpoint_num=40, # **kwargs, ): # super().__init__(**kwargs) self.num_frames = num_frames self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.x_vis_return_idx = x_vis_return_idx self.sep_image_video_pos_embed = sep_image_video_pos_embed self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num def build_vit(config, pt_type='origin'): model = PretrainVisionTransformer_clean( in_chans=config.num_channels, img_size=config.image_size, patch_size=config.patch_size, embed_dim=config.hidden_size, depth=config.num_hidden_layers, num_heads=config.num_attention_heads, mlp_ratio=48/11, # clip_embed_dim=config.vision_encoder.clip_embed_dim, attn_pool_num_heads=16, qkv_bias=False, drop_path_rate=0.25, init_values=0.00001, qk_normalization=True, use_flash_attn=True, use_fused_rmsnorm=False, use_fused_mlp=False, fused_mlp_heuristic=1, layerscale_no_force_fp32=False, num_frames=config.num_frames, tubelet_size=1, sep_pos_embed=False, sep_image_video_pos_embed=config.sep_image_video_pos_embed, use_checkpoint=config.use_checkpoint, checkpoint_num=config.checkpoint_num, x_vis_return_idx=config.x_vis_return_idx, x_vis_only=True ) if config.num_frames != 4: raise NotImplementedError return model class InternVideo2VisionTower(nn.Module): def __init__(self, vision_tower, vision_tower_cfg, delay_load=False, pt_type='origin', image_size=224): super().__init__() self.is_loaded = False self.pt_type = pt_type self.config = InternVideo2VisionConfig(num_frames=vision_tower_cfg.mm_local_num_frames, x_vis_return_idx=vision_tower_cfg.mm_vision_select_layer, image_size=image_size) self.vision_tower_name = vision_tower self.image_processor = InternVideo2ImageProcessor(size=(image_size, image_size)) if not delay_load: print(f"Loading vision tower: {vision_tower}") self.load_model() elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False): # TODO: better detector is needed. print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") self.load_model() elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts: print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.") self.load_model() else: raise NotImplementedError self.cfg_only = self.config def load_model(self, device_map=None): if self.is_loaded: print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name)) return self.vision_tower = build_vit(self.config, pt_type=self.pt_type) self.vision_tower.requires_grad_(False) self.is_loaded = True def forward(self, images): if type(images) is list: raise NotImplementedError else: # input: B T C H W # output: B T*L C T = images.shape[1] images = images.permute(0, 2, 1, 3, 4) image_embeds = self.vision_tower(images, use_image=(T == 1)) return image_embeds[:, 1:, :] @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): for p in self.vision_tower.parameters(): return p.dtype @property def device(self): for p in self.vision_tower.parameters(): return p.device @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size def build_vision_tower(vision_tower_cfg, **kwargs): vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None)) return InternVideo2VisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)