openvino-ci commited on
Commit
6bc4fde
·
verified ·
1 Parent(s): 0399c92

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ pipeline_tag: image-text-to-text
5
+ base_model:
6
+ - mistral-community/pixtral-12b
7
+ base_model_relation: quantized
8
+ ---
9
+
10
+ # pixtral-12b-int4-ov
11
+
12
+ * Model creator: [mistral-community](https://huggingface.co/mistral-community)
13
+ * Original model: [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b)
14
+
15
+ ## Description
16
+
17
+ This is [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
18
+
19
+
20
+ ## Quantization Parameters
21
+
22
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
23
+
24
+ * mode: **INT4_ASYM**
25
+
26
+ ## Compatibility
27
+
28
+ The provided OpenVINO™ IR model is compatible with:
29
+
30
+ * OpenVINO version 2025.2.0 and higher
31
+ * Optimum Intel 1.26.0 and higher
32
+
33
+ ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
34
+
35
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
36
+
37
+ ```
38
+ pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino
39
+
40
+ pip install git+https://github.com/huggingface/optimum-intel.git
41
+ ```
42
+
43
+ 2. Run model inference
44
+
45
+ ```
46
+ from PIL import Image
47
+ import requests
48
+ from optimum.intel.openvino import OVModelForVisualCausalLM
49
+ from transformers import AutoTokenizer, TextStreamer
50
+
51
+ model_id = "OpenVINO/pixtral-12b-int4-ov"
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
54
+
55
+ ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True)
56
+ prompt = "What is unusual on this picture?"
57
+
58
+ url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
59
+ image = Image.open(requests.get(url, stream=True).raw)
60
+
61
+ inputs = ov_model.preprocess_inputs(text=prompt, image=image, tokenizer=tokenizer, config=ov_model.config)
62
+
63
+ generation_args = {
64
+ "max_new_tokens": 100,
65
+ "streamer": TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
66
+ }
67
+
68
+ generate_ids = ov_model.generate(**inputs, **generation_args)
69
+
70
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
71
+ response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
72
+
73
+ ```
74
+
75
+ ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
76
+
77
+ 1. Install packages required for using OpenVINO GenAI.
78
+ ```
79
+ pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino openvino-tokenizers openvino-genai
80
+
81
+ pip install huggingface_hub
82
+ ```
83
+
84
+ 2. Download model from HuggingFace Hub
85
+
86
+ ```
87
+ import huggingface_hub as hf_hub
88
+
89
+ model_id = "OpenVINO/pixtral-12b-int4-ov"
90
+ model_path = "pixtral-12b-int4-ov"
91
+
92
+ hf_hub.snapshot_download(model_id, local_dir=model_path)
93
+
94
+ ```
95
+
96
+ 1. Run model inference:
97
+
98
+ ```
99
+ import openvino_genai as ov_genai
100
+ import requests
101
+ from PIL import Image
102
+ from io import BytesIO
103
+ import numpy as np
104
+ import openvino as ov
105
+
106
+ device = "CPU"
107
+ pipe = ov_genai.VLMPipeline(model_path, device)
108
+
109
+ def load_image(image_file):
110
+ if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")):
111
+ response = requests.get(image_file)
112
+ image = Image.open(BytesIO(response.content)).convert("RGB")
113
+ else:
114
+ image = Image.open(image_file).convert("RGB")
115
+ image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte)
116
+ return ov.Tensor(image_data)
117
+
118
+ prompt = "What is unusual on this picture?"
119
+
120
+ url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
121
+ image_tensor = load_image(url)
122
+
123
+ def streamer(subword: str) -> bool:
124
+ print(subword, end="", flush=True)
125
+ return False
126
+
127
+ pipe.start_chat()
128
+ output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100, streamer=streamer)
129
+ pipe.finish_chat()
130
+ ```
131
+
132
+ More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
133
+
134
+
135
+ ## Limitations
136
+
137
+ Check the original [model card](https://huggingface.co/mistral-community/pixtral-12b) for limitations.
138
+
139
+ ## Legal information
140
+
141
+ The original model is distributed under [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) license. More details can be found in [original model card](https://huggingface.co/mistral-community/pixtral-12b).
142
+
143
+ ## Disclaimer
144
+
145
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
146
+
chat_template.jinja ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}{%- set system_message = messages[0]["content"] %}{%- set loop_messages = messages[1:] %}
2
+ {%- else %}{%- set loop_messages = messages %}{%- endif %}{{- bos_token }}{%- for message in loop_messages %}{%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}{%- endif %}{%- if message["role"] == "user" %}{%- if loop.last and system_message is defined %}{{- "[INST]" + system_message + "
3
+
4
+ " }}{%- else %}{{ "[INST]" }}{%- endif %}{%- endif %}{%- if message["content"] is not string %}{%- for chunk in message["content"] %}{%- if chunk["type"] == "text" %}{%- if "content" in chunk %}{{- chunk["content"] }}{%- elif "text" in chunk %}{{- chunk["text"] }}{%- endif %}{%- elif chunk["type"] == "image" %}{{- "[IMG]" }}{%- else %}{{- raise_exception("Unrecognized content type!") }}{%- endif %}{%- endfor %}{%- else %}{{- message["content"] }}{%- endif %}{%- if message["role"] == "user" %}{{- "[/INST]" }}{%- elif message["role"] == "assistant" %}{{- eos_token}}{%- else %}{{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}{%- endif %}{%- endfor %}
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlavaForConditionalGeneration"
4
+ ],
5
+ "ignore_index": -100,
6
+ "image_seq_length": 1,
7
+ "image_token_index": 10,
8
+ "model_type": "llava",
9
+ "multimodal_projector_bias": true,
10
+ "projector_hidden_act": "gelu",
11
+ "text_config": {
12
+ "attention_dropout": 0.0,
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 5120,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 14336,
18
+ "is_composition": true,
19
+ "max_position_embeddings": 1024000,
20
+ "model_type": "mistral",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 40,
23
+ "num_key_value_heads": 8,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_theta": 1000000000.0,
26
+ "sliding_window": null,
27
+ "torch_dtype": "bfloat16",
28
+ "use_cache": true,
29
+ "vocab_size": 131072
30
+ },
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.53.3",
33
+ "vision_config": {
34
+ "attention_dropout": 0.0,
35
+ "head_dim": 64,
36
+ "hidden_act": "silu",
37
+ "hidden_size": 1024,
38
+ "image_size": 1024,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 4096,
41
+ "is_composition": true,
42
+ "model_type": "pixtral",
43
+ "num_attention_heads": 16,
44
+ "num_channels": 3,
45
+ "num_hidden_layers": 24,
46
+ "patch_size": 16,
47
+ "rope_theta": 10000.0,
48
+ "tie_word_embeddings": false,
49
+ "torch_dtype": "bfloat16"
50
+ },
51
+ "vision_feature_layer": -1,
52
+ "vision_feature_select_strategy": "full"
53
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.53.3"
6
+ }
openvino_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dtype": "int4",
3
+ "input_info": null,
4
+ "optimum_version": "1.27.0",
5
+ "output_attentions": false,
6
+ "quantization_config": {
7
+ "all_layers": null,
8
+ "backup_precision": null,
9
+ "bits": 4,
10
+ "dataset": null,
11
+ "dtype": "int4",
12
+ "gptq": null,
13
+ "group_size": 128,
14
+ "ignored_scope": null,
15
+ "lora_correction": null,
16
+ "num_samples": null,
17
+ "processor": null,
18
+ "quant_method": "default",
19
+ "ratio": 1.0,
20
+ "scale_estimation": null,
21
+ "sensitivity_metric": null,
22
+ "statistics_path": null,
23
+ "sym": false,
24
+ "tokenizer": null,
25
+ "trust_remote_code": false
26
+ },
27
+ "save_onnx_model": false,
28
+ "transformers_version": "4.53.3"
29
+ }
openvino_language_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aec64c98cf3020db1871a81712386d8e0d68986904e0a81bc8a698e165b90cde
3
+ size 6338728549
openvino_language_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_text_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17717e2eb187715be5e9c01b85cbef5185d7c2fe0874fd95b006f45bbfb9d640
3
+ size 671350788
openvino_text_embeddings_model.xml ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="Model3" version="11">
3
+ <layers>
4
+ <layer id="0" name="input" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="input">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="self.weight" type="Const" version="opset1">
14
+ <data element_type="i8" shape="131072, 5120" offset="0" size="671088640" />
15
+ <output>
16
+ <port id="0" precision="I8">
17
+ <dim>131072</dim>
18
+ <dim>5120</dim>
19
+ </port>
20
+ </output>
21
+ </layer>
22
+ <layer id="2" name="Convert_1417199" type="Convert" version="opset1">
23
+ <data destination_type="f16" />
24
+ <input>
25
+ <port id="0" precision="I8">
26
+ <dim>131072</dim>
27
+ <dim>5120</dim>
28
+ </port>
29
+ </input>
30
+ <output>
31
+ <port id="1" precision="FP16">
32
+ <dim>131072</dim>
33
+ <dim>5120</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="self.weight/scale" type="Const" version="opset1">
38
+ <data element_type="f16" shape="131072, 1" offset="671088640" size="262144" />
39
+ <output>
40
+ <port id="0" precision="FP16">
41
+ <dim>131072</dim>
42
+ <dim>1</dim>
43
+ </port>
44
+ </output>
45
+ </layer>
46
+ <layer id="4" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
47
+ <data auto_broadcast="numpy" />
48
+ <input>
49
+ <port id="0" precision="FP16">
50
+ <dim>131072</dim>
51
+ <dim>5120</dim>
52
+ </port>
53
+ <port id="1" precision="FP16">
54
+ <dim>131072</dim>
55
+ <dim>1</dim>
56
+ </port>
57
+ </input>
58
+ <output>
59
+ <port id="2" precision="FP16">
60
+ <dim>131072</dim>
61
+ <dim>5120</dim>
62
+ </port>
63
+ </output>
64
+ </layer>
65
+ <layer id="5" name="ov_ext::embedding/Convert" type="Convert" version="opset1">
66
+ <data destination_type="f32" />
67
+ <rt_info>
68
+ <attribute name="decompression" version="0" />
69
+ </rt_info>
70
+ <input>
71
+ <port id="0" precision="FP16">
72
+ <dim>131072</dim>
73
+ <dim>5120</dim>
74
+ </port>
75
+ </input>
76
+ <output>
77
+ <port id="1" precision="FP32">
78
+ <dim>131072</dim>
79
+ <dim>5120</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="6" name="ov_ext::embedding/Convert_1" type="Convert" version="opset1">
84
+ <data destination_type="i32" />
85
+ <input>
86
+ <port id="0" precision="I64">
87
+ <dim>-1</dim>
88
+ <dim>-1</dim>
89
+ </port>
90
+ </input>
91
+ <output>
92
+ <port id="1" precision="I32">
93
+ <dim>-1</dim>
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="ov_ext::embedding/Constant" type="Const" version="opset1">
99
+ <data element_type="i32" shape="" offset="671350784" size="4" />
100
+ <output>
101
+ <port id="0" precision="I32" />
102
+ </output>
103
+ </layer>
104
+ <layer id="8" name="ov_ext::embedding/Gather" type="Gather" version="opset8">
105
+ <data batch_dims="0" />
106
+ <input>
107
+ <port id="0" precision="FP32">
108
+ <dim>131072</dim>
109
+ <dim>5120</dim>
110
+ </port>
111
+ <port id="1" precision="I32">
112
+ <dim>-1</dim>
113
+ <dim>-1</dim>
114
+ </port>
115
+ <port id="2" precision="I32" />
116
+ </input>
117
+ <output>
118
+ <port id="3" precision="FP32" names="inputs_embeds">
119
+ <dim>-1</dim>
120
+ <dim>-1</dim>
121
+ <dim>5120</dim>
122
+ </port>
123
+ </output>
124
+ </layer>
125
+ <layer id="9" name="Result_39958" type="Result" version="opset1" output_names="inputs_embeds">
126
+ <input>
127
+ <port id="0" precision="FP32">
128
+ <dim>-1</dim>
129
+ <dim>-1</dim>
130
+ <dim>5120</dim>
131
+ </port>
132
+ </input>
133
+ </layer>
134
+ </layers>
135
+ <edges>
136
+ <edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
137
+ <edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
138
+ <edge from-layer="2" from-port="1" to-layer="4" to-port="0" />
139
+ <edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
140
+ <edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
141
+ <edge from-layer="5" from-port="1" to-layer="8" to-port="0" />
142
+ <edge from-layer="6" from-port="1" to-layer="8" to-port="1" />
143
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
144
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
145
+ </edges>
146
+ <rt_info>
147
+ <Runtime_version value="2025.2.0-19140-c01cd93e24d-releases/2025/2" />
148
+ <conversion_parameters>
149
+ <framework value="pytorch" />
150
+ <is_python_object value="True" />
151
+ </conversion_parameters>
152
+ <nncf>
153
+ <friendly_names_were_updated value="True" />
154
+ <version value="2.17.0" />
155
+ <weight_compression>
156
+ <advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100, 'prefer_data_aware_scaling': True}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}, 'lora_adapter_rank': 256, 'backend_params': {}}" />
157
+ <all_layers value="False" />
158
+ <awq value="False" />
159
+ <backup_mode value="int8_asym" />
160
+ <compression_format value="dequantize" />
161
+ <gptq value="False" />
162
+ <group_size value="-1" />
163
+ <ignored_scope value="[]" />
164
+ <lora_correction value="False" />
165
+ <mode value="int8_sym" />
166
+ <ratio value="1.0" />
167
+ <scale_estimation value="False" />
168
+ <sensitivity_metric value="weight_quantization_error" />
169
+ </weight_compression>
170
+ </nncf>
171
+ <optimum>
172
+ <nncf_version value="2.17.0" />
173
+ <optimum_intel_version value="1.26.0.dev0+e9c57b9" />
174
+ <optimum_version value="1.27.0" />
175
+ <pytorch_version value="2.8.0+cpu" />
176
+ <transformers_version value="4.53.3" />
177
+ </optimum>
178
+ </rt_info>
179
+ </net>
openvino_vision_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99689065da64cb43f89171e1f249971c6a9d3cde52507822a22314bf15a8274
3
+ size 436050236
openvino_vision_embeddings_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "PixtralImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "patch_size": {
18
+ "height": 16,
19
+ "width": 16
20
+ },
21
+ "processor_class": "PixtralProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 1024
26
+ }
27
+ }
processor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_break_token": "[IMG_BREAK]",
3
+ "image_end_token": "[IMG_END]",
4
+ "image_token": "[IMG]",
5
+ "patch_size": 16,
6
+ "processor_class": "PixtralProcessor",
7
+ "spatial_merge_size": 1
8
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcdf3e6b96371b9a5c8673bdf2f1bc838b994b73a6fa995dca62196346aaddb5
3
+ size 17077311
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff