Improve model card: Add pipeline tag, library, links, and usage example
Browse filesThis PR significantly enhances the model card for **PAPO: Perception-Aware Policy Optimization for Multimodal Reasoning** by:
- Adding the `pipeline_tag: image-text-to-text`, which accurately categorizes the model as a multimodal large language model capable of processing images and text to generate text. This improves its discoverability on the Hugging Face Hub (e.g., at https://huggingface.co/models?pipeline_tag=image-text-to-text).
- Specifying `library_name: transformers`, enabling the convenient "Use in Transformers" widget directly on the model page and providing standard loading instructions for users.
- Updating the paper link to the official Hugging Face Papers page (https://huggingface.co/papers/2507.06448) for better integration within the Hub's ecosystem.
- Including direct links to the project page (https://mikewangwzhl.github.io/PAPO/) and the GitHub repository (https://github.com/mikewangwzhl/PAPO) for users to find more context and the source code.
- Adding a practical Python code snippet for inference using the `transformers` library, allowing users to quickly get started with the model.
These updates aim to provide a more comprehensive, user-friendly, and discoverable model card.
@@ -1,14 +1,56 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
datasets:
|
4 |
- PAPOGalaxy/PAPO_train
|
|
|
|
|
|
|
5 |
---
|
6 |
|
|
|
7 |
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
## Model Version
|
14 |
-
PAPO (γ=0.01)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
datasets:
|
3 |
- PAPOGalaxy/PAPO_train
|
4 |
+
license: mit
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
library_name: transformers
|
7 |
---
|
8 |
|
9 |
+
# PAPO: Perception-Aware Policy Optimization for Multimodal Reasoning
|
10 |
|
11 |
+
This is the official model released for our paper [Perception-Aware Policy Optimization for Multimodal Reasoning](https://huggingface.co/papers/2507.06448).
|
12 |
|
13 |
+
**Project Page:** [https://mikewangwzhl.github.io/PAPO/](https://mikewangwzhl.github.io/PAPO/)
|
14 |
+
**Code:** [https://github.com/mikewangwzhl/PAPO](https://github.com/mikewangwzhl/PAPO)
|
15 |
|
16 |
## Model Version
|
17 |
+
PAPO (γ=0.01)
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
You can use this model with the Hugging Face `transformers` library.
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
25 |
+
from PIL import Image
|
26 |
+
import requests
|
27 |
+
|
28 |
+
# Replace "PAPOGalaxy/PAPO" with the actual model ID if different
|
29 |
+
# For example, if it's PAPOGalaxy/PAPO-7B or PAPOGalaxy/PAPO-3B
|
30 |
+
model_id = "PAPOGalaxy/PAPO"
|
31 |
+
|
32 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
34 |
+
|
35 |
+
# Example image (replace with your own image path or URL)
|
36 |
+
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/bee.JPG"
|
37 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
38 |
+
|
39 |
+
# Example prompt
|
40 |
+
prompt = "What is in the image?"
|
41 |
+
|
42 |
+
# Prepare inputs following the model's chat template
|
43 |
+
messages = [
|
44 |
+
{"role": "user", "content": [
|
45 |
+
{"type": "image", "image": image},
|
46 |
+
{"type": "text", "text": prompt}
|
47 |
+
]}
|
48 |
+
]
|
49 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
50 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
|
51 |
+
|
52 |
+
# Generate response
|
53 |
+
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
54 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
55 |
+
print(generated_text)
|
56 |
+
```
|