import torch from transformers import LlamaForCausalLM from .configuration_pruned_llama import LlamaPrunedConfig import torch.nn as nn class LlamaPrunedForCausalLM(LlamaForCausalLM): config_class = LlamaPrunedConfig def __init__(self, config: LlamaPrunedConfig): super().__init__(config) for layer in self.model.layers[config.begin_pruned_layer: config.end_pruned_layer]: layer.self_attn.hidden_size = 3072 layer.self_attn.q_proj = nn.Linear(4096, 3072, bias=False) layer.self_attn.k_proj = nn.Linear(4096, 768, bias=False) layer.self_attn.v_proj = nn.Linear(4096, 768, bias=False) layer.self_attn.o_proj = nn.Linear(3072, 4096, bias=False) layer.mlp.gate_proj = nn.Linear(4096, 10752, bias=False) layer.mlp.up_proj = nn.Linear(4096, 10752, bias=False) layer.mlp.down_proj = nn.Linear(10752, 4096, bias=False) for layer in self.model.layers: layer.self_attn.num_heads = layer.self_attn.q_proj.weight.data.shape[0] // layer.self_attn.head_dim layer.self_attn.num_key_value_heads = layer.self_attn.k_proj.weight.data.shape[ 0] // layer.self_attn.head_dim