File size: 2,048 Bytes
ac939c6 ca345e3 41b354f ac939c6 8eccb93 e5820e5 12f787f ac939c6 8ca5157 ac939c6 b9a23f8 ac939c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
tags:
- merge
- mergekit
- lazymergekit
base_model:
- Nitral-AI/Kunocchini-7b-128k-test
- MTSAIR/multi_verse_model
license: apache-2.0
language:
- en
---
# KunoichiVerse-7B

# Description
KunoichiVerse-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Nitral-AI/Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test)
* [MTSAIR/multi_verse_model](https://huggingface.co/MTSAIR/multi_verse_model)
This model uses a context window of 128k. Special thanks to Nitral-AI and MTSAIR for the models.
# GGUF
Special thanks to GGUFs made by [MarsupialAI](https://huggingface.co/MarsupialAI)
* [MarsupialAI/KunoichiVerse-7B_iMatrix_GGUF](https://huggingface.co/MarsupialAI/KunoichiVerse-7B_iMatrix_GGUF)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Nitral-AI/Kunocchini-7b-128k-test
layer_range: [0, 32]
- model: MTSAIR/multi_verse_model
layer_range: [0, 32]
merge_method: slerp
base_model: Nitral-AI/Kunocchini-7b-128k-test
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ppoyaa/KunoichiVerse-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |