File size: 1,884 Bytes
47a08e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc9c26
 
 
47a08e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc9c26
47a08e5
 
 
3fc9c26
 
 
 
 
 
 
47a08e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-classifier

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3165
- Accuracy: 0.8809
- F1: 0.7916

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| No log        | 0      | 0    | 0.6991          | 0.3573   | 0.4668 |
| No log        | 0.6006 | 188  | 0.3642          | 0.8505   | 0.7246 |
| No log        | 1.2013 | 376  | 0.3155          | 0.8761   | 0.7717 |
| 0.3491        | 1.8019 | 564  | 0.3068          | 0.8833   | 0.7972 |
| 0.3491        | 2.4026 | 752  | 0.3198          | 0.8833   | 0.8016 |


### Framework versions

- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2