aashish1904 commited on
Commit
29125ae
·
verified ·
1 Parent(s): 9fdc1f9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ library_name: transformers
5
+ license: apache-2.0
6
+ language:
7
+ - en
8
+
9
+ ---
10
+
11
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
12
+
13
+
14
+ # QuantFactory/SmolLM2-135M-Instruct-GGUF
15
+ This is quantized version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) created using llama.cpp
16
+
17
+ # Original Model Card
18
+
19
+
20
+
21
+ # SmolLM2
22
+
23
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/3ntM63zkmxY2cNRhgY_Kl.png)
24
+
25
+ ## Table of Contents
26
+
27
+ 1. [Model Summary](##model-summary)
28
+ 2. [Limitations](##limitations)
29
+ 3. [Training](##training)
30
+ 4. [License](##license)
31
+ 5. [Citation](##citation)
32
+
33
+ ## Model Summary
34
+
35
+ SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
36
+
37
+ SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 135M model was trained on 2 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
38
+
39
+ The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
40
+
41
+ ### How to use
42
+
43
+ ### Transformers
44
+ ```bash
45
+ pip install transformers
46
+ ```
47
+
48
+ ```python
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+ checkpoint = "HuggingFaceTB/SmolLM2-135M-Instruct"
51
+
52
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
53
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
54
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
55
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
56
+
57
+ messages = [{"role": "user", "content": "What is gravity?"}]
58
+ input_text=tokenizer.apply_chat_template(messages, tokenize=False)
59
+ print(input_text)
60
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
61
+ outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
62
+ print(tokenizer.decode(outputs[0]))
63
+ ```
64
+
65
+ ### Chat in TRL
66
+ You can also use the TRL CLI to chat with the model from the terminal:
67
+ ```bash
68
+ pip install trl
69
+ trl chat --model_name_or_path HuggingFaceTB/SmolLM2-135M-Instruct --device cpu
70
+ ```
71
+
72
+ ## Evaluation
73
+
74
+ In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
75
+
76
+ ## Base pre-trained model
77
+
78
+ | Metrics | SmolLM2-135M-8k | SmolLM-135M |
79
+ |:-------------------|:----------------:|:------------:|
80
+ | HellaSwag | **42.1** | 41.2 |
81
+ | ARC (Average) | **43.9** | 42.4 |
82
+ | PIQA | 68.4 | 68.4 |
83
+ | MMLU (cloze) | **31.5** | 30.2 |
84
+ | CommonsenseQA | **33.9** | 32.7 |
85
+ | TriviaQA | 4.1 | **4.3** |
86
+ | Winogrande | 51.3 | 51.3 |
87
+ | OpenBookQA | **34.6** | 34.0 |
88
+ | GSM8K (5-shot) | **1.4** | 1.0 |
89
+
90
+
91
+ ## Instruction model
92
+
93
+ | Metric | SmolLM2-135M-Instruct | SmolLM-135M-Instruct |
94
+ |:-----------------------------|:---------------------:|:--------------------:|
95
+ | IFEval (Average prompt/inst) | **29.9** | 17.2 |
96
+ | MT-Bench | **19.8** | 16.8 |
97
+ | HellaSwag | **40.9** | 38.9 |
98
+ | ARC (Average) | **37.3** | 33.9 |
99
+ | PIQA | **66.3** | 64.0 |
100
+ | MMLU (cloze) | **29.3** | 28.3 |
101
+ | BBH (3-shot) | **28.2** | 25.2 |
102
+ | GSM8K (5-shot) | 1.4 | 1.4 |
103
+
104
+
105
+
106
+ ## Limitations
107
+
108
+ SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
109
+
110
+ ## Training
111
+
112
+ ### Model
113
+
114
+ - **Architecture:** Transformer decoder
115
+ - **Pretraining tokens:** 2T
116
+ - **Precision:** bfloat16
117
+
118
+ ### Hardware
119
+
120
+ - **GPUs:** 64 H100
121
+
122
+ ### Software
123
+
124
+ - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
125
+
126
+ ## License
127
+
128
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
129
+
130
+ ## Citation
131
+ ```bash
132
+ @misc{allal2024SmolLM2,
133
+ title={SmolLM2 - with great data, comes great performance},
134
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
135
+ year={2024},
136
+ }
137
+ ```