chenkq commited on
Commit
8673745
Β·
verified Β·
1 Parent(s): 5c484a7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -5
README.md CHANGED
@@ -100,25 +100,25 @@ from qwen_vl_utils import process_vision_info
100
 
101
  # default: Load the model on the available device(s)
102
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
103
- "Qwen/Qwen2.5-VL-72B-Instruct", torch_dtype="auto", device_map="auto"
104
  )
105
 
106
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
107
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
108
- # "Qwen/Qwen2.5-VL-72B-Instruct",
109
  # torch_dtype=torch.bfloat16,
110
  # attn_implementation="flash_attention_2",
111
  # device_map="auto",
112
  # )
113
 
114
  # default processer
115
- processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct")
116
 
117
  # The default range for the number of visual tokens per image in the model is 4-16384.
118
  # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
119
  # min_pixels = 256*28*28
120
  # max_pixels = 1280*28*28
121
- # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
122
 
123
  messages = [
124
  {
@@ -210,7 +210,7 @@ The model supports a wide range of resolution inputs. By default, it uses the na
210
  min_pixels = 256 * 28 * 28
211
  max_pixels = 1280 * 28 * 28
212
  processor = AutoProcessor.from_pretrained(
213
- "Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
214
  )
215
  ```
216
 
@@ -279,6 +279,28 @@ However, it should be noted that this method has a significant impact on the per
279
  At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k.
280
 
281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282
 
283
  ## Citation
284
 
 
100
 
101
  # default: Load the model on the available device(s)
102
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
103
+ "Qwen/Qwen2.5-VL-72B-Instruct-AWQ", torch_dtype="auto", device_map="auto"
104
  )
105
 
106
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
107
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
108
+ # "Qwen/Qwen2.5-VL-72B-Instruct-AWQ",
109
  # torch_dtype=torch.bfloat16,
110
  # attn_implementation="flash_attention_2",
111
  # device_map="auto",
112
  # )
113
 
114
  # default processer
115
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct-AWQ")
116
 
117
  # The default range for the number of visual tokens per image in the model is 4-16384.
118
  # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
119
  # min_pixels = 256*28*28
120
  # max_pixels = 1280*28*28
121
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct-AWQ", min_pixels=min_pixels, max_pixels=max_pixels)
122
 
123
  messages = [
124
  {
 
210
  min_pixels = 256 * 28 * 28
211
  max_pixels = 1280 * 28 * 28
212
  processor = AutoProcessor.from_pretrained(
213
+ "Qwen/Qwen2.5-VL-72B-Instruct-AWQ", min_pixels=min_pixels, max_pixels=max_pixels
214
  )
215
  ```
216
 
 
279
  At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k.
280
 
281
 
282
+ ### Benchmark
283
+ #### Performance of Quantized Models
284
+ This section reports the generation performance of quantized models (including GPTQ and AWQ) of the Qwen2.5-VL series. Specifically, we report:
285
+
286
+ - MMMU_VAL (Accuracy)
287
+ - DocVQA_VAL (Accuracy)
288
+ - MMBench_DEV_EN (Accuracy)
289
+ - MathVista_MINI (Accuracy)
290
+
291
+ We use [VLMEvalkit](https://github.com/open-compass/VLMEvalKit) to evaluate all models.
292
+
293
+ | Model Size | Quantization | MMMU_VAL | DocVQA_VAL | MMBench_EDV_EN | MathVista_MINI |
294
+ | --- | --- | --- | --- | --- | --- |
295
+ | Qwen2.5-VL-72B-Instruct | BF16<br><sup>([πŸ€—](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct)[πŸ€–](https://modelscope.cn/models/qwen/Qwen2.5-VL-72B-Instruct)) | 70.0 | 96.1 | 88.2 | 75.3 |
296
+ | | AWQ<br><sup>([πŸ€—](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct-AWQ)[πŸ€–](https://modelscope.cn/models/qwen/Qwen2.5-VL-72B-Instruct-AWQ)) | 69.1 | 96.0 | 87.9 | 73.8 |
297
+ | Qwen2.5-VL-7B-Instruct | BF16<br><sup>([πŸ€—](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)[πŸ€–](https://modelscope.cn/models/qwen/Qwen2.5-VL-7B-Instruct)) | 58.4 | 94.9 | 84.1 | 67.9 |
298
+ | | AWQ<br><sup>([πŸ€—](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct-AWQ)[πŸ€–](https://modelscope.cn/models/qwen/Qwen2.5-VL-7B-Instruct-AWQ)) | 55.6 | 94.6 | 84.2 | 64.7 |
299
+ | Qwen2.5-VL-3B-Instruct | BF16<br><sup>([πŸ€—](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct)[πŸ€–](https://modelscope.cn/models/qwen/Qwen2.5-VL-3B-Instruct)) | 51.7 | 93.0 | 79.8 | 61.4 |
300
+ | | AWQ<br><sup>([πŸ€—](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct-AWQ)[πŸ€–](https://modelscope.cn/models/qwen/Qwen2.5-VL-3B-Instruct-AWQ)) | 49.1 | 91.8 | 78.0 | 58.8 |
301
+
302
+
303
+
304
 
305
  ## Citation
306