File size: 9,065 Bytes
4921b3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import math
import numpy as np
import random
import torch
import torch.nn as nn
from transformers import BertModel,BertConfig
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
import pickle
class Embeddings(nn.Module):
def __init__(self, n_token, d_model):
super().__init__()
self.lut = nn.Embedding(n_token, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
# BERT model: similar approach to "felix"
class MidiBert(nn.Module):
def __init__(self, bertConfig, e2w, w2e):
super().__init__()
self.bert = BertModel(bertConfig)
bertConfig.d_model = bertConfig.hidden_size
self.hidden_size = bertConfig.hidden_size
self.bertConfig = bertConfig
self.n_tokens = []
self.classes = ['Bar', 'Position', 'Instrument', 'Pitch', 'Duration', 'Velocity', 'TimeSig', 'Tempo']
for key in self.classes:
self.n_tokens.append(len(e2w[key]))
self.emb_sizes = [256] * 8
self.e2w = e2w
self.w2e = w2e
# for deciding whether the current input_ids is a <PAD> token
self.bar_pad_word = self.e2w['Bar']['Bar <PAD>']
self.mask_word_np = np.array([self.e2w[etype]['%s <MASK>' % etype] for etype in self.classes], dtype=np.longlong)
self.pad_word_np = np.array([self.e2w[etype]['%s <PAD>' % etype] for etype in self.classes], dtype=np.longlong)
self.sos_word_np = np.array([self.e2w[etype]['%s <SOS>' % etype] for etype in self.classes], dtype=np.longlong)
self.eos_word_np = np.array([self.e2w[etype]['%s <EOS>' % etype] for etype in self.classes], dtype=np.longlong)
# word_emb: embeddings to change token ids into embeddings
self.word_emb = []
# self.linear_emb = []
for i, key in enumerate(self.classes): # 将每个特征都Embedding到256维,Embedding参数是可学习的
self.word_emb.append(Embeddings(self.n_tokens[i], self.emb_sizes[i]))
# self.linear_emb.append(nn.Linear(self.n_tokens[i], self.emb_sizes[i]))
self.word_emb = nn.ModuleList(self.word_emb)
# self.linear_emb = nn.ModuleList(self.linear_emb)
# linear layer to merge embeddings from different token types
self.in_linear = nn.Linear(int(np.sum(self.emb_sizes)), bertConfig.d_model)
self.attention_linear = nn.Sequential(
nn.Linear(int(np.sum(self.emb_sizes)), np.sum(self.emb_sizes) //2),
nn.ReLU(),
nn.Linear(np.sum(self.emb_sizes) // 2, np.sum(self.emb_sizes) // 2),
nn.ReLU(),
nn.Linear(np.sum(self.emb_sizes) // 2, int(np.sum(self.emb_sizes))),
nn.Sigmoid(),
)
def forward(self, input_ids, attn_mask=None, output_hidden_states=True, x=None):
# convert input_ids into embeddings and merge them through linear layer
embs = []
for i, key in enumerate(self.classes):
# if x is None:
# embs.append(self.word_emb[i](input_ids[..., i]))
# else:
# emb_result = self.word_emb[i](input_ids[..., i])
# linear_result = self.linear_emb[i](x[i])
# embs.append(emb_result+(linear_result-linear_result.detach()))
embs.append(self.word_emb[i](input_ids[..., i]))
embs = torch.cat([*embs], dim=-1)
# embs = self.tw_attention(embs)
emb_linear = self.in_linear(embs)
# feed to bert
y = self.bert(inputs_embeds=emb_linear, attention_mask=attn_mask, output_hidden_states=output_hidden_states)
# y = y.last_hidden_state # (batch_size, seq_len, 768)
return y
def get_rand_tok(self):
rand=[0]*8
for i in range(8):
rand[i]=random.choice(range(self.n_tokens[i]))
return np.array(rand)
def tw_attention(self,x):
weight = self.attention_linear(x)
return x * weight
class MidiBertLM(nn.Module):
def __init__(self, midibert: MidiBert):
super().__init__()
self.midibert = midibert
self.mask_lm = MLM(self.midibert.e2w, self.midibert.n_tokens, self.midibert.hidden_size)
def forward(self, x, attn):
x = self.midibert(x, attn)
return self.mask_lm(x)
class MLM(nn.Module):
def __init__(self, e2w, n_tokens, hidden_size):
super().__init__()
# proj: project embeddings to logits for prediction
self.proj = []
for i, etype in enumerate(e2w):
self.proj.append(nn.Linear(hidden_size, n_tokens[i]))
self.proj = nn.ModuleList(self.proj) # 必须用这种方法才能像列表一样访问网络的每层
self.e2w = e2w
def forward(self, y):
# feed to bert
y = y.hidden_states[-1]
# convert embeddings back to logits for prediction
ys = []
for i, etype in enumerate(self.e2w):
ys.append(self.proj[i](y)) # (batch_size, seq_len, dict_size)
return ys
class Masker(nn.Module):
def __init__(self, midibert, hs):
super().__init__()
self.midibert = midibert
self.linear = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(hs, 256),
nn.ReLU(),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, y, attn, layer=-1):
# feed to bert
y = self.midibert(y, attn, output_hidden_states=True)
# y = y.last_hidden_state # (batch_size, seq_len, 768)
y = y.hidden_states[layer]
y = self.linear(y)
return y.squeeze()
class TokenClassification(nn.Module):
def __init__(self, midibert, class_num, hs):
super().__init__()
self.midibert = midibert
self.classifier = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(hs, 256),
nn.ReLU(),
nn.Linear(256, class_num)
)
# self.norm = nn.BatchNorm1d(hs)
# self.hs = hs
def forward(self, y, attn, layer=-1):
# feed to bert
y = self.midibert(y, attn, output_hidden_states=True)
# batchsize = y.shape[0]
# y = y.view(-1,self.hs)
# y = self.norm(y)
# y = y.view(batchsize,-1,self.hs)
# y = y.last_hidden_state # (batch_size, seq_len, 768)
y = y.hidden_states[layer]
return self.classifier(y)
class SequenceClassification(nn.Module):
def __init__(self, midibert, class_num, hs, da=128, r=4):
super(SequenceClassification, self).__init__()
self.midibert = midibert
self.attention = SelfAttention(hs, da, r)
self.classifier = nn.Sequential(
nn.Linear(hs * r, 256),
nn.ReLU(),
nn.Linear(256, class_num)
)
# self.norm = nn.BatchNorm1d(hs)
# self.hs = hs
def forward(self, x, attn, layer=-1): # x: (batch, 512, 4)
x = self.midibert(x, attn, output_hidden_states=True) # (batch, 512, 768)
# batchsize = x.shape[0]
# x = x.view(-1,self.hs)
# x = self.norm(x)
# x = x.view(batchsize,-1,self.hs)
# y = y.last_hidden_state # (batch_size, seq_len, 768)
x = x.hidden_states[layer]
attn_mat = self.attention(x) # attn_mat: (batch, r, 512)
m = torch.bmm(attn_mat, x) # m: (batch, r, 768)
flatten = m.view(m.size()[0], -1) # flatten: (batch, r*768)
res = self.classifier(flatten) # res: (batch, class_num)
return res
class SelfAttention(nn.Module):
def __init__(self, input_dim, da, r):
'''
Args:
input_dim (int): batch, seq, input_dim
da (int): number of features in hidden layer from self-attn
r (int): number of aspects of self-attn
'''
super(SelfAttention, self).__init__()
self.ws1 = nn.Linear(input_dim, da, bias=False)
self.ws2 = nn.Linear(da, r, bias=False)
def forward(self, h):
attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1)
attn_mat = attn_mat.permute(0, 2, 1)
return attn_mat
class Adversarial_MidiBERT(
nn.Module,
PyTorchModelHubMixin
):
def __init__(self, max_position_embeddings=1024, hidden_size=768):
super().__init__()
with open("./Octuple.pkl", 'rb') as f:
self.e2w, self.w2e = pickle.load(f)
self.config = BertConfig(max_position_embeddings=max_position_embeddings, position_embedding_type='relative_key_query', hidden_size=hidden_size)
self.model = MidiBert(bertConfig=self.config, e2w=self.e2w, w2e=self.w2e)
def forward(self, x, attn_mask=None, output_hidden_states=True):
return self.model(x,attn_mask,output_hidden_states)
|