import math import numpy as np import random import torch import torch.nn as nn from transformers import BertModel,BertConfig import torch.nn.functional as F from huggingface_hub import PyTorchModelHubMixin import pickle class Embeddings(nn.Module): def __init__(self, n_token, d_model): super().__init__() self.lut = nn.Embedding(n_token, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) # BERT model: similar approach to "felix" class MidiBert(nn.Module): def __init__(self, bertConfig, e2w, w2e): super().__init__() self.bert = BertModel(bertConfig) bertConfig.d_model = bertConfig.hidden_size self.hidden_size = bertConfig.hidden_size self.bertConfig = bertConfig self.n_tokens = [] self.classes = ['Bar', 'Position', 'Instrument', 'Pitch', 'Duration', 'Velocity', 'TimeSig', 'Tempo'] for key in self.classes: self.n_tokens.append(len(e2w[key])) self.emb_sizes = [256] * 8 self.e2w = e2w self.w2e = w2e # for deciding whether the current input_ids is a token self.bar_pad_word = self.e2w['Bar']['Bar '] self.mask_word_np = np.array([self.e2w[etype]['%s ' % etype] for etype in self.classes], dtype=np.longlong) self.pad_word_np = np.array([self.e2w[etype]['%s ' % etype] for etype in self.classes], dtype=np.longlong) self.sos_word_np = np.array([self.e2w[etype]['%s ' % etype] for etype in self.classes], dtype=np.longlong) self.eos_word_np = np.array([self.e2w[etype]['%s ' % etype] for etype in self.classes], dtype=np.longlong) # word_emb: embeddings to change token ids into embeddings self.word_emb = [] # self.linear_emb = [] for i, key in enumerate(self.classes): # 将每个特征都Embedding到256维,Embedding参数是可学习的 self.word_emb.append(Embeddings(self.n_tokens[i], self.emb_sizes[i])) # self.linear_emb.append(nn.Linear(self.n_tokens[i], self.emb_sizes[i])) self.word_emb = nn.ModuleList(self.word_emb) # self.linear_emb = nn.ModuleList(self.linear_emb) # linear layer to merge embeddings from different token types self.in_linear = nn.Linear(int(np.sum(self.emb_sizes)), bertConfig.d_model) self.attention_linear = nn.Sequential( nn.Linear(int(np.sum(self.emb_sizes)), np.sum(self.emb_sizes) //2), nn.ReLU(), nn.Linear(np.sum(self.emb_sizes) // 2, np.sum(self.emb_sizes) // 2), nn.ReLU(), nn.Linear(np.sum(self.emb_sizes) // 2, int(np.sum(self.emb_sizes))), nn.Sigmoid(), ) def forward(self, input_ids, attn_mask=None, output_hidden_states=True, x=None): # convert input_ids into embeddings and merge them through linear layer embs = [] for i, key in enumerate(self.classes): # if x is None: # embs.append(self.word_emb[i](input_ids[..., i])) # else: # emb_result = self.word_emb[i](input_ids[..., i]) # linear_result = self.linear_emb[i](x[i]) # embs.append(emb_result+(linear_result-linear_result.detach())) embs.append(self.word_emb[i](input_ids[..., i])) embs = torch.cat([*embs], dim=-1) # embs = self.tw_attention(embs) emb_linear = self.in_linear(embs) # feed to bert y = self.bert(inputs_embeds=emb_linear, attention_mask=attn_mask, output_hidden_states=output_hidden_states) # y = y.last_hidden_state # (batch_size, seq_len, 768) return y def get_rand_tok(self): rand=[0]*8 for i in range(8): rand[i]=random.choice(range(self.n_tokens[i])) return np.array(rand) def tw_attention(self,x): weight = self.attention_linear(x) return x * weight class MidiBertLM(nn.Module): def __init__(self, midibert: MidiBert): super().__init__() self.midibert = midibert self.mask_lm = MLM(self.midibert.e2w, self.midibert.n_tokens, self.midibert.hidden_size) def forward(self, x, attn): x = self.midibert(x, attn) return self.mask_lm(x) class MLM(nn.Module): def __init__(self, e2w, n_tokens, hidden_size): super().__init__() # proj: project embeddings to logits for prediction self.proj = [] for i, etype in enumerate(e2w): self.proj.append(nn.Linear(hidden_size, n_tokens[i])) self.proj = nn.ModuleList(self.proj) # 必须用这种方法才能像列表一样访问网络的每层 self.e2w = e2w def forward(self, y): # feed to bert y = y.hidden_states[-1] # convert embeddings back to logits for prediction ys = [] for i, etype in enumerate(self.e2w): ys.append(self.proj[i](y)) # (batch_size, seq_len, dict_size) return ys class Masker(nn.Module): def __init__(self, midibert, hs): super().__init__() self.midibert = midibert self.linear = nn.Sequential( nn.Dropout(0.1), nn.Linear(hs, 256), nn.ReLU(), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, y, attn, layer=-1): # feed to bert y = self.midibert(y, attn, output_hidden_states=True) # y = y.last_hidden_state # (batch_size, seq_len, 768) y = y.hidden_states[layer] y = self.linear(y) return y.squeeze() class TokenClassification(nn.Module): def __init__(self, midibert, class_num, hs): super().__init__() self.midibert = midibert self.classifier = nn.Sequential( nn.Dropout(0.1), nn.Linear(hs, 256), nn.ReLU(), nn.Linear(256, class_num) ) # self.norm = nn.BatchNorm1d(hs) # self.hs = hs def forward(self, y, attn, layer=-1): # feed to bert y = self.midibert(y, attn, output_hidden_states=True) # batchsize = y.shape[0] # y = y.view(-1,self.hs) # y = self.norm(y) # y = y.view(batchsize,-1,self.hs) # y = y.last_hidden_state # (batch_size, seq_len, 768) y = y.hidden_states[layer] return self.classifier(y) class SequenceClassification(nn.Module): def __init__(self, midibert, class_num, hs, da=128, r=4): super(SequenceClassification, self).__init__() self.midibert = midibert self.attention = SelfAttention(hs, da, r) self.classifier = nn.Sequential( nn.Linear(hs * r, 256), nn.ReLU(), nn.Linear(256, class_num) ) # self.norm = nn.BatchNorm1d(hs) # self.hs = hs def forward(self, x, attn, layer=-1): # x: (batch, 512, 4) x = self.midibert(x, attn, output_hidden_states=True) # (batch, 512, 768) # batchsize = x.shape[0] # x = x.view(-1,self.hs) # x = self.norm(x) # x = x.view(batchsize,-1,self.hs) # y = y.last_hidden_state # (batch_size, seq_len, 768) x = x.hidden_states[layer] attn_mat = self.attention(x) # attn_mat: (batch, r, 512) m = torch.bmm(attn_mat, x) # m: (batch, r, 768) flatten = m.view(m.size()[0], -1) # flatten: (batch, r*768) res = self.classifier(flatten) # res: (batch, class_num) return res class SelfAttention(nn.Module): def __init__(self, input_dim, da, r): ''' Args: input_dim (int): batch, seq, input_dim da (int): number of features in hidden layer from self-attn r (int): number of aspects of self-attn ''' super(SelfAttention, self).__init__() self.ws1 = nn.Linear(input_dim, da, bias=False) self.ws2 = nn.Linear(da, r, bias=False) def forward(self, h): attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1) attn_mat = attn_mat.permute(0, 2, 1) return attn_mat class Adversarial_MidiBERT( nn.Module, PyTorchModelHubMixin ): def __init__(self, max_position_embeddings=1024, hidden_size=768): super().__init__() with open("./Octuple.pkl", 'rb') as f: self.e2w, self.w2e = pickle.load(f) self.config = BertConfig(max_position_embeddings=max_position_embeddings, position_embedding_type='relative_key_query', hidden_size=hidden_size) self.model = MidiBert(bertConfig=self.config, e2w=self.e2w, w2e=self.w2e) def forward(self, x, attn_mask=None, output_hidden_states=True): return self.model(x,attn_mask,output_hidden_states)