Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertConfig,BertModel
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.autograd import Function
|
6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
7 |
+
|
8 |
+
|
9 |
+
class CSIBERT(nn.Module):
|
10 |
+
def __init__(self,bertconfig,input_dim,carrier_attention=False, time_emb=True):
|
11 |
+
super().__init__()
|
12 |
+
self.bertconfig=bertconfig
|
13 |
+
self.auto_pos=time_emb
|
14 |
+
self.bert=BertModel(bertconfig)
|
15 |
+
self.hidden_dim=bertconfig.hidden_size
|
16 |
+
self.input_dim=input_dim
|
17 |
+
self.carrier_attention=carrier_attention
|
18 |
+
if carrier_attention:
|
19 |
+
self.attention = SelfAttention(bertconfig.max_position_embeddings, 128, input_dim)
|
20 |
+
self.emb=nn.Sequential(
|
21 |
+
nn.Linear(input_dim, 64),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Linear(64, self.hidden_dim)
|
24 |
+
)
|
25 |
+
|
26 |
+
else:
|
27 |
+
self.emb=nn.Sequential(
|
28 |
+
nn.Linear(input_dim, 64),
|
29 |
+
nn.ReLU(),
|
30 |
+
nn.Linear(64, self.hidden_dim)
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def forward(self,x,attn_mask=None,timestamp=None):
|
35 |
+
if self.carrier_attention:
|
36 |
+
x=x.permute(0,2,1)
|
37 |
+
attn_mat = self.attention(x)
|
38 |
+
x = torch.bmm(attn_mat, x)
|
39 |
+
x = x.permute(0, 2, 1)
|
40 |
+
x=self.emb(x)
|
41 |
+
if timestamp is not None:
|
42 |
+
pos_emb=self.positional_embedding(timestamp)
|
43 |
+
x=x+pos_emb
|
44 |
+
y=self.bert(inputs_embeds=x,attention_mask=attn_mask, output_hidden_states=True)
|
45 |
+
y=y.hidden_states[-1]
|
46 |
+
return y
|
47 |
+
|
48 |
+
def mask(self,batch_size=1,min=None,max=None,std=None,avg=None):
|
49 |
+
if std is not None and avg is not None:
|
50 |
+
device=std.device
|
51 |
+
result=torch.randn((batch_size, self.bertconfig.max_position_embeddings ,self.input_dim)).to(device)
|
52 |
+
result=result*std+avg
|
53 |
+
else:
|
54 |
+
result=torch.rand((batch_size, self.bertconfig.max_position_embeddings ,self.input_dim))
|
55 |
+
if min is not None and max is not None:
|
56 |
+
device = max.device
|
57 |
+
result=result.to(device)
|
58 |
+
result=result*(max-min)+min
|
59 |
+
return result
|
60 |
+
|
61 |
+
def positional_embedding(self,timestamp,t=1):
|
62 |
+
timestamp**=t
|
63 |
+
device=timestamp.device
|
64 |
+
min=torch.min(timestamp,dim=-1,keepdim=True)[0]
|
65 |
+
max=torch.max(timestamp,dim=-1,keepdim=True)[0]
|
66 |
+
ran=timestamp.shape[-1]
|
67 |
+
timestamp=(timestamp-min)/(max-min)*ran
|
68 |
+
d_model=self.hidden_dim
|
69 |
+
dim=torch.tensor(list(range(d_model))).to(device)
|
70 |
+
batch_size,length=timestamp.shape
|
71 |
+
timestamp=timestamp.unsqueeze(2).repeat(1, 1, d_model)
|
72 |
+
dim=dim.reshape([1,1,-1]).repeat(batch_size,length,1)
|
73 |
+
sin_emb = torch.sin(timestamp/10000**(dim//2*2/d_model))
|
74 |
+
cos_emb = torch.cos(timestamp/10000**(dim//2*2/d_model))
|
75 |
+
mask=torch.zeros(d_model).to(device)
|
76 |
+
mask[::2]=1
|
77 |
+
emb=sin_emb*mask+cos_emb*(1-mask)
|
78 |
+
return emb
|
79 |
+
|
80 |
+
class Token_Classifier(nn.Module):
|
81 |
+
def __init__(self,bert,class_num=52):
|
82 |
+
super().__init__()
|
83 |
+
self.bert=bert
|
84 |
+
self.classifier=nn.Sequential(
|
85 |
+
nn.Linear(bert.hidden_dim, 64),
|
86 |
+
nn.ReLU(),
|
87 |
+
nn.Linear(64, class_num)
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self,x,attn_mask=None,timestamp=None):
|
91 |
+
x=self.bert(x,attn_mask,timestamp)
|
92 |
+
x=self.classifier(x)
|
93 |
+
return x
|
94 |
+
|
95 |
+
# GRL
|
96 |
+
class GRL(Function):
|
97 |
+
@staticmethod
|
98 |
+
def forward(ctx, x, alpha=1):
|
99 |
+
ctx.alpha = alpha
|
100 |
+
return x.view_as(x)
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def backward(ctx, grad_output):
|
104 |
+
output = grad_output.neg() * ctx.alpha
|
105 |
+
return output, None
|
106 |
+
|
107 |
+
|
108 |
+
class Sequence_Classifier(nn.Module):
|
109 |
+
def __init__(self,bert,class_num=6):
|
110 |
+
super().__init__()
|
111 |
+
self.bert=bert
|
112 |
+
self.query = nn.Linear(bert.hidden_dim, 64)
|
113 |
+
self.key = nn.Linear(bert.hidden_dim, 64)
|
114 |
+
self.value = nn.Linear(bert.hidden_dim, 64)
|
115 |
+
self.self_attention = nn.MultiheadAttention(embed_dim=64, num_heads=4, dropout=0, batch_first=True)
|
116 |
+
self.norm1=nn.BatchNorm1d(64)
|
117 |
+
self.Linear=nn.Linear(64, 64)
|
118 |
+
self.norm2 = nn.BatchNorm1d(bert.bertconfig.max_position_embeddings * 64)
|
119 |
+
self.classifier=nn.Sequential(
|
120 |
+
nn.Linear(bert.bertconfig.max_position_embeddings * 64, 64),
|
121 |
+
nn.ReLU(),
|
122 |
+
nn.Linear(64, class_num)
|
123 |
+
)
|
124 |
+
self.GRL = GRL()
|
125 |
+
|
126 |
+
|
127 |
+
def forward(self,x,attn_mask=None,timestamp=None,adversarial=False,alpha=1):
|
128 |
+
x=self.bert(x,attn_mask,timestamp)
|
129 |
+
if adversarial:
|
130 |
+
x = self.GRL.apply(x,alpha)
|
131 |
+
batch_size,length,hidden_dim=x.shape
|
132 |
+
x_attn, _ = self.self_attention(self.query(x), self.key(x), self.value(x))
|
133 |
+
x = x + x_attn
|
134 |
+
x1 = x.reshape(-1, 64)
|
135 |
+
x1 = self.norm1(x1)
|
136 |
+
x1 = self.Linear(x1)
|
137 |
+
x2 = x1.reshape(batch_size, -1)
|
138 |
+
x2 = self.norm2(x2)
|
139 |
+
x2=self.classifier(x2)
|
140 |
+
return x2
|
141 |
+
|
142 |
+
class SelfAttention(nn.Module):
|
143 |
+
def __init__(self, input_dim, da, r):
|
144 |
+
super().__init__()
|
145 |
+
self.ws1 = nn.Linear(input_dim, da, bias=False)
|
146 |
+
self.ws2 = nn.Linear(da, r, bias=False)
|
147 |
+
|
148 |
+
def forward(self, h):
|
149 |
+
attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1)
|
150 |
+
attn_mat = attn_mat.permute(0, 2, 1)
|
151 |
+
return attn_mat
|
152 |
+
|
153 |
+
class Classification(nn.Module):
|
154 |
+
def __init__(self, csibert, class_num, hs=64, da=128, r=4):
|
155 |
+
super().__init__()
|
156 |
+
self.bert = csibert
|
157 |
+
self.attention = SelfAttention(hs, da, r)
|
158 |
+
self.classifier = nn.Sequential(
|
159 |
+
nn.Linear(hs * r, 256),
|
160 |
+
nn.ReLU(),
|
161 |
+
nn.Linear(256, class_num)
|
162 |
+
)
|
163 |
+
self.GRL = GRL()
|
164 |
+
|
165 |
+
|
166 |
+
def forward(self, x, attn=None, timestamp=None,adversarial=False):
|
167 |
+
x = self.bert(x, attn, timestamp)
|
168 |
+
if adversarial:
|
169 |
+
x = self.GRL.apply(x)
|
170 |
+
attn_mat = self.attention(x)
|
171 |
+
m = torch.bmm(attn_mat, x)
|
172 |
+
flatten = m.view(m.size()[0], -1)
|
173 |
+
res = self.classifier(flatten)
|
174 |
+
return res
|
175 |
+
|
176 |
+
class CSI_BERT( nn.Module,
|
177 |
+
PyTorchModelHubMixin
|
178 |
+
):
|
179 |
+
def __init__(self, max_len=100, hs=64, layers=4, heads=4, intermediate_size=128, carrier_dim=52, carrier_attn=False, time_embedding=True):
|
180 |
+
super().__init__()
|
181 |
+
self.config = BertConfig(max_position_embeddings=max_len, hidden_size=hs, num_hidden_layers=layers,num_attention_heads=heads, intermediate_size=intermediate_size)
|
182 |
+
self.model = CSIBERT(self.config,carrier_dim,carrier_attn,time_embedding)
|
183 |
+
|
184 |
+
|
185 |
+
def forward(self, x, attn_mask=None, timestamp=None):
|
186 |
+
return self.model(x,attn_mask,timestamp)
|