Safetensors
GGUF
English
chain-of-thought
cot-reasoning
step-by-step-reasoning
systematic-research-planning
academic-assistant
academic-planning
thesis-planning
dissertation-planning
research-question-formulation
literature-review-planning
methodology-design
experimental-design
qualitative-research-planning
quantitative-research-planning
mixed-methods-planning
student-research-assistant
phd-support
postgraduate-tool
early-career-researcher
grant-writing-assistant
research-proposal-helper
cross-disciplinary-research
interdisciplinary-methodology
academic-mentorship-tool
research-evaluation-assistant
independent-researcher-tool
r-and-d-assistant
reasoning-model
structured-output
systematic-analysis
problem-decomposition
research-breakdown
actionable-planning
scientific-research
social-science-research
humanities-research
medical-research-planning
engineering-research
business-research
mistral-based
mistral-fine-tune
lora-adaptation
foundation-model
instruction-tuned
7b-parameters
ai-research-assistant
research-automation
sota-research-planning
hypothesis-generation
experiment-design-assistant
literature-analysis
paper-outline-generator
structured-output-generation
systematic-reasoning
detailed-planning
zero-shot-planning
research-summarization
biomedical-research-assistant
clinical-trial-planning
tech-r-and-d
materials-science
computational-research
data-science-assistant
literature-synthesis
meta-analysis-helper
best-research-assistant-model
top-research-planning-model
research-ai-assistant
ai-research-mentor
academic-planning-ai
research-workflow-automation
quantum-computing-research
ai-ml-research-planning
cybersecurity-research
neuroscience-research-planning
genomics-research
robotics-research-planning
climate-science-research
behavioral-economics-research
educational-technology-research
research-plan-generator
methodology-recommendation
data-collection-planning
analysis-strategy-development
implementation-planning
evaluation-framework-design
challenge-identification
resource-requirement-analysis
technical-limitation-assessment
research-gap-analysis
knowledge-synthesis
practical-research-tools
affordable-research-assistant
systematic-planning-tool
comprehensive-research-framework
research-project-management
researcher-productivity-tool
text-to-research-plan
dual-output-model
think-answer-format
evidence-based-research-planning
research-mentoring
science-domains-expert
engineering-domains-expert
social-science-domains-expert
multidisciplinary-research
structured-research-planning
hierarchical-plan-generator
convergent-thinking
divergent-thinking
research-ideation
experimental-protocol-design
mistral-research-assistant
focused-research-scope
quantitative-analysis-planning
portable-research-assistant
education-research-tool
Research-Reasoner-7B-v0.3
Research-Reasoner-7B
Research-Reasoner
conversational
Research-Reasoner-7B-v0.3 Training Documentation | |
=================================================== | |
Model Training Details | |
--------------------- | |
Base Model: Mistral 7B Instruct v0.3 | |
Fine-tuning Method: LoRA (Low-Rank Adaptation) | |
Training Infrastructure: Single NVIDIA A100 PCIe GPU | |
Training Duration: Approximately 3.8 hours | |
Training Dataset: Custom curated dataset for research planning | |
Dataset Specifications | |
--------------------- | |
Total Token Count: 5,840,200 | |
Total Sample Count: 5,750 | |
Average Tokens/Sample: 1,015.69 | |
Dataset Creation: Generated using DeepSeek-V3 API | |
Training Configuration | |
--------------------- | |
LoRA Parameters: | |
- Rank: 32 | |
- Alpha: 64 | |
- Dropout: 0.1 | |
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head | |
Training Hyperparameters: | |
- Learning Rate: 5e-5 | |
- Batch Size: 4 | |
- Gradient Accumulation: 5 | |
- Effective Batch Size: 20 | |
- Max Sequence Length: 2048 | |
- Epochs: 3 | |
- Warmup Ratio: 0.01 | |
- Weight Decay: 0.01 | |
- Max Grad Norm: 1.0 | |
- LR Scheduler: Cosine | |
Hardware & Environment | |
--------------------- | |
GPU: NVIDIA A100 PCIe (40GB) | |
Operating System: Ubuntu | |
CUDA Version: 11.8 | |
PyTorch Version: 2.7.0 | |
Compute Capability: 8.0 | |
Optimization: FP16, Gradient Checkpointing | |
Training Performance | |
--------------------- | |
Training Runtime: 3.87 hours (13,936 seconds) | |
Train Samples/Second: 1.176 | |
Train Steps/Second: 0.059 | |
Training Loss (Final): 0.137 | |
Validation Loss (Final): 0.230 | |
Total Training Steps: 822 |