File size: 9,699 Bytes
59eb0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
license: llama3.1
language:
- en
tags:
- nvidia
- llama3.1
- w4a16
- int4
- vllm
base_model: meta-llama/Llama-3.1-70B-Instruct
library_name: transformers
---

# Llama-3.1-Nemotron-70B-Instruct-HF-quantized.w4a16

## Model Overview
- **Model Architecture:** Llama-3.1-70B-Instruct
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
  - **Activation quantization:** None
- **Release Date:** 3/1/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [Llama-3.1-Nemotron-70B-Instruct-Hf](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF).
It achieves an average score of 79.48 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.92.

### Model Optimizations

This model was obtained by only quantizing the weights to INT4 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. 

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 2
model_name = "neuralmagic-ent/Llama-3.1-Nemotron-70B-Instruct-HF-quantized.w4a16"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command:

```bash
python quantize.py --model_path nvidia/Llama-3.1-Nemotron-70B-Instruct-HF --quant_path "output_dir" --calib_size 512 --dampening_frac 0.01 --observer mse --actorder group 
```


```python
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy

def parse_actorder(value):
    # Interpret the input value for --actorder
    if value.lower() == "false":
        return False
    elif value.lower() == "group":
        return "group"
    else:
        raise argparse.ArgumentTypeError("Invalid value for --actorder. Use 'group' or 'False'.")


parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--num_bits', type=int, default=4)
parser.add_argument('--sequential_update', type=bool, default=True)
parser.add_argument('--calib_size', type=int, default=256) 
parser.add_argument('--dampening_frac', type=float, default=0.05) 
parser.add_argument('--observer', type=str, default="minmax") 
parser.add_argument(
    '--actorder',
    type=parse_actorder,
    default=False,  # Default value is False
    help="Specify actorder as 'group' (string) or False (boolean)."
)

args = parser.parse_args()

model = SparseAutoModelForCausalLM.from_pretrained(
    args.model_path,
    device_map="auto",
    torch_dtype="auto",
    use_cache=False,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)

NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "garage-bAInd/Open-Platypus"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

def preprocess(example):
    concat_txt = example["instruction"] + "\n" + example["output"]
    return {"text": concat_txt}

ds = ds.map(preprocess)

def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        truncation=False,
        add_special_tokens=True,
    )


ds = ds.map(tokenize, remove_columns=ds.column_names)

quant_scheme = QuantizationScheme(
    targets=["Linear"],
    weights=QuantizationArgs(
        num_bits=args.num_bits,
        type=QuantizationType.INT,
        symmetric=True,
        group_size=128,
        strategy=QuantizationStrategy.GROUP,
        observer=args.observer,
        actorder=args.actorder
    ),
    input_activations=None,
    output_activations=None,
)

recipe = [
    GPTQModifier(
        targets=["Linear"],
        ignore=["lm_head"],
        sequential_update=args.sequential_update,
        dampening_frac=args.dampening_frac,
        config_groups={"group_0": quant_scheme},
    )
]
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    num_calibration_samples=args.calib_size,
)

# Save to disk compressed.
SAVE_DIR = args.quant_path
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```

## Evaluation

The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:

OpenLLM Leaderboard V1:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.1-Nemotron-70B-Instruct-HF-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config
```

OpenLLM Leaderboard V2:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.1-Nemotron-70B-Instruct-HF-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks leaderboard \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

```

### Accuracy

#### OpenLLM Leaderboard V1 evaluation scores

| Metric                                   | nvidia/Llama-3.1-Nemotron-70B-Instruct-HF             | neuralmagic-ent/Llama-3.1-Nemotron-70B-Instruct-HF-quantized.w4a16 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
| ARC-Challenge (Acc-Norm, 25-shot)       | 71.76                            | 72.53                                       |
| GSM8K (Strict-Match, 5-shot)            | 82.94                            | 86.88                                        |
| HellaSwag (Acc-Norm, 10-shot)           | 87.61                            | 87.09                                       |
| MMLU (Acc, 5-shot)                      | 82.56                            | 81.97                                       |
| TruthfulQA (MC2, 0-shot)                | 64.85                            | 64.01                                       |
| Winogrande (Acc, 5-shot)                | 83.82                            | 84.37                                       |
| **Average Score**                       | **78.92**                        | **79.48**                                   |
| **Recovery**                            | **100.00**                       | **100.71**                                   |

#### OpenLLM Leaderboard V2 evaluation scores

| Metric                                                   | nvidia/Llama-3.1-Nemotron-70B-Instruct-HF             | neuralmagic-ent/Llama-3.1-Nemotron-70B-Instruct-HF-quantized.w4a16 |
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:|
| IFEval (Inst-and-Prompt Level Strict Acc, 0-shot)       | 74.3                            | 72.02                                       |
| BBH (Acc-Norm, 3-shot)                                  | 47.39                            | 48.33                                       |
| Math-Hard (Exact-Match, 4-shot)                         | 23.21                            | 25.69                                       |
| GPQA (Acc-Norm, 0-shot)                                 | 1.2                             | 1.96                                        |
| MUSR (Acc-Norm, 0-shot)                                 | 13.2                             | 12.5                                       |
| MMLU-Pro (Acc, 5-shot)                                  | 43.45                            | 43.57                                       |
| **Average Score**                                       | **33.79**                        | **34.01**                                   |
| **Recovery**                                            | **100.00**                       | **100.65**                                   |