Eldar Kurtic commited on
Commit
dcfd7ff
·
1 Parent(s): 5d63c63
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - w4a16
4
+ - int4
5
+ - vllm
6
+ license: apache-2.0
7
+ license_link: https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE
8
+ language:
9
+ - en
10
+ base_model: Qwen/Qwen2.5-32B-Instruct
11
+ tags:
12
+ - chat
13
+ library_name: transformers
14
+ ---
15
+
16
+ # QwQ-32B-Preview-quantized.w4a16
17
+
18
+ ## Model Overview
19
+ - **Model Architecture:** QwQ-32B-Preview
20
+ - **Input:** Text
21
+ - **Output:** Text
22
+ - **Model Optimizations:**
23
+ - **Weight quantization:** INT4
24
+ - **Activation quantization:** None
25
+ - **Release Date:** 3/1/2025
26
+ - **Version:** 1.0
27
+ - **Model Developers:** Neural Magic
28
+
29
+ Quantized version of [QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview).
30
+ It achieves an average score of 75.87 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 77.20.
31
+
32
+ ### Model Optimizations
33
+
34
+ This model was obtained by only quantizing the weights of [QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) to INT4 data type, ready for inference with vLLM >= 0.5.2.
35
+ This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized.
36
+
37
+ ## Deployment
38
+
39
+ ### Use with vLLM
40
+
41
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
42
+
43
+ ```python
44
+ from transformers import AutoTokenizer
45
+ from vllm import LLM, SamplingParams
46
+
47
+ max_model_len, tp_size = 4096, 1
48
+ model_name = "neuralmagic-ent/QwQ-32B-Preview-quantized.w4a16"
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
50
+ llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
51
+ sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
52
+
53
+ messages_list = [
54
+ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
55
+ ]
56
+
57
+ prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
58
+
59
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
60
+
61
+ generated_text = [output.outputs[0].text for output in outputs]
62
+ print(generated_text)
63
+ ```
64
+
65
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
66
+
67
+ ## Creation
68
+
69
+ This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following arguments:
70
+
71
+
72
+ ```bash
73
+ python quantize.py --model_path Qwen/QwQ-32B-Preview --quant_path "output_dir/QwQ-32B-Preview-quantized.w4a16" --calib_size 128 --dampening_frac 0.1 --observer minmax --actorder False
74
+ ```
75
+
76
+
77
+ ```python
78
+ from datasets import load_dataset
79
+ from transformers import AutoTokenizer
80
+ from llmcompressor.modifiers.quantization import GPTQModifier
81
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
82
+ import argparse
83
+ from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
84
+
85
+ def parse_actorder(value):
86
+ # Interpret the input value for --actorder
87
+ if value.lower() == "false":
88
+ return False
89
+ elif value.lower() == "group":
90
+ return "group"
91
+ else:
92
+ raise argparse.ArgumentTypeError("Invalid value for --actorder. Use 'group' or 'False'.")
93
+
94
+
95
+ parser = argparse.ArgumentParser()
96
+ parser.add_argument('--model_path', type=str)
97
+ parser.add_argument('--quant_path', type=str)
98
+ parser.add_argument('--num_bits', type=int, default=4)
99
+ parser.add_argument('--sequential_update', type=bool, default=True)
100
+ parser.add_argument('--calib_size', type=int, default=256)
101
+ parser.add_argument('--dampening_frac', type=float, default=0.05)
102
+ parser.add_argument('--observer', type=str, default="minmax")
103
+ parser.add_argument(
104
+ '--actorder',
105
+ type=parse_actorder,
106
+ default=False,
107
+ help="Specify actorder as 'group' (string) or False (boolean)."
108
+ )
109
+
110
+ args = parser.parse_args()
111
+
112
+ model = SparseAutoModelForCausalLM.from_pretrained(
113
+ args.model_path,
114
+ device_map="auto",
115
+ torch_dtype="auto",
116
+ use_cache=False,
117
+ )
118
+ tokenizer = AutoTokenizer.from_pretrained(args.model_path)
119
+
120
+ NUM_CALIBRATION_SAMPLES = args.calib_size
121
+ DATASET_ID = "garage-bAInd/Open-Platypus"
122
+ DATASET_SPLIT = "train"
123
+ ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
124
+ ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
125
+
126
+ def preprocess(example):
127
+ concat_txt = example["instruction"] + "\n" + example["output"]
128
+ return {"text": concat_txt}
129
+
130
+ ds = ds.map(preprocess)
131
+
132
+ def tokenize(sample):
133
+ return tokenizer(
134
+ sample["text"],
135
+ padding=False,
136
+ truncation=False,
137
+ add_special_tokens=True,
138
+ )
139
+
140
+ ds = ds.map(tokenize, remove_columns=ds.column_names)
141
+ quant_scheme = QuantizationScheme(
142
+ targets=["Linear"],
143
+ weights=QuantizationArgs(
144
+ num_bits=args.num_bits,
145
+ type=QuantizationType.INT,
146
+ symmetric=True,
147
+ group_size=128,
148
+ strategy=QuantizationStrategy.GROUP,
149
+ observer=args.observer,
150
+ actorder=args.actorder
151
+ ),
152
+ input_activations=None,
153
+ output_activations=None,
154
+ )
155
+
156
+ recipe = [
157
+ GPTQModifier(
158
+ targets=["Linear"],
159
+ ignore=["lm_head"],
160
+ sequential_update=args.sequential_update,
161
+ dampening_frac=args.dampening_frac,
162
+ config_groups={"group_0": quant_scheme},
163
+ )
164
+ ]
165
+ oneshot(
166
+ model=model,
167
+ dataset=ds,
168
+ recipe=recipe,
169
+ num_calibration_samples=args.calib_size,
170
+ )
171
+
172
+ # Save to disk compressed.
173
+ SAVE_DIR = args.quant_path
174
+ model.save_pretrained(SAVE_DIR, save_compressed=True)
175
+ tokenizer.save_pretrained(SAVE_DIR)
176
+ ```
177
+
178
+ ## Evaluation
179
+
180
+ The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:
181
+
182
+ OpenLLM Leaderboard V1:
183
+ ```
184
+ lm_eval \
185
+ --model vllm \
186
+ --model_args pretrained="neuralmagic-ent/QwQ-32B-Preview-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
187
+ --tasks openllm \
188
+ --write_out \
189
+ --batch_size auto \
190
+ --output_path output_dir \
191
+ --show_config
192
+ ```
193
+
194
+ OpenLLM Leaderboard V2:
195
+ ```
196
+ lm_eval \
197
+ --model vllm \
198
+ --model_args pretrained="neuralmagic-ent/QwQ-32B-Preview-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
199
+ --apply_chat_template \
200
+ --fewshot_as_multiturn \
201
+ --tasks leaderboard \
202
+ --write_out \
203
+ --batch_size auto \
204
+ --output_path output_dir \
205
+ --show_config
206
+
207
+ ```
208
+
209
+ ### Accuracy
210
+
211
+ #### OpenLLM Leaderboard V1 evaluation scores
212
+
213
+ | Metric | Qwen/QwQ-32B-Preview | neuralmagic-ent/QwQ-32B-Preview-quantized.w4a16 |
214
+ |-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
215
+ | ARC-Challenge (Acc-Norm, 25-shot) | 70.73 | 70.14 |
216
+ | GSM8K (Strict-Match, 5-shot) | 83.09 | 79.83 |
217
+ | HellaSwag (Acc-Norm, 10-shot) | 85.77 | 85.01 |
218
+ | MMLU (Acc, 5-shot) | 82.67 | 81.58 |
219
+ | TruthfulQA (MC2, 0-shot) | 60.88 | 59.57 |
220
+ | Winogrande (Acc, 5-shot) | 80.03 | 79.08 |
221
+ | **Average Score** | **77.20** | **75.87** |
222
+ | **Recovery** | **100.00** | **98.28** |
223
+
224
+ #### OpenLLM Leaderboard V2 evaluation scores
225
+
226
+ | Metric | Qwen/QwQ-32B-Preview | neuralmagic-ent/QwQ-32B-Preview-quantized.w4a16 |
227
+ |---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:|
228
+ | IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 42.34 | 41.09 |
229
+ | BBH (Acc-Norm, 3-shot) | 53.03 | 50.19 |
230
+ | Math-Hard (Exact-Match, 4-shot) | 21.15 | 22.68 |
231
+ | GPQA (Acc-Norm, 0-shot) | 2.97 | 3.64 |
232
+ | MUSR (Acc-Norm, 0-shot) | 9.57 | 14.01 |
233
+ | MMLU-Pro (Acc, 5-shot) | 52.00 | 49.87 |
234
+ | **Average Score** | **30.18** | **30.25** |
235
+ | **Recovery** | **100.00** | **100.23** |
236
+
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/QwQ-32B-Preview",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 27648,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 64,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 64,
18
+ "num_key_value_heads": 8,
19
+ "quantization_config": {
20
+ "config_groups": {
21
+ "group_0": {
22
+ "input_activations": null,
23
+ "output_activations": null,
24
+ "targets": [
25
+ "Linear"
26
+ ],
27
+ "weights": {
28
+ "actorder": null,
29
+ "block_structure": null,
30
+ "dynamic": false,
31
+ "group_size": 128,
32
+ "num_bits": 4,
33
+ "observer": "minmax",
34
+ "observer_kwargs": {},
35
+ "strategy": "group",
36
+ "symmetric": true,
37
+ "type": "int"
38
+ }
39
+ }
40
+ },
41
+ "format": "pack-quantized",
42
+ "global_compression_ratio": 1.9011197903965849,
43
+ "ignore": [
44
+ "lm_head"
45
+ ],
46
+ "kv_cache_scheme": null,
47
+ "quant_method": "compressed-tensors",
48
+ "quantization_status": "compressed",
49
+ "sparsity_config": {
50
+ "format": "dense",
51
+ "global_sparsity": 0.17497218403392226,
52
+ "ignore": [
53
+ "model.layers.0.self_attn.q_proj",
54
+ "model.layers.0.self_attn.k_proj",
55
+ "model.layers.0.self_attn.v_proj",
56
+ "model.layers.0.self_attn.o_proj",
57
+ "model.layers.0.mlp.gate_proj",
58
+ "model.layers.0.mlp.up_proj",
59
+ "model.layers.0.mlp.down_proj",
60
+ "model.layers.1.self_attn.v_proj",
61
+ "model.layers.1.self_attn.o_proj",
62
+ "model.layers.2.self_attn.v_proj",
63
+ "model.layers.2.self_attn.o_proj",
64
+ "model.layers.2.mlp.up_proj",
65
+ "model.layers.3.self_attn.q_proj",
66
+ "model.layers.3.self_attn.k_proj",
67
+ "model.layers.3.self_attn.v_proj",
68
+ "model.layers.3.self_attn.o_proj",
69
+ "model.layers.3.mlp.up_proj",
70
+ "model.layers.4.self_attn.q_proj",
71
+ "model.layers.4.self_attn.k_proj",
72
+ "model.layers.4.self_attn.v_proj",
73
+ "model.layers.4.self_attn.o_proj",
74
+ "model.layers.4.mlp.gate_proj",
75
+ "model.layers.4.mlp.up_proj",
76
+ "model.layers.5.self_attn.q_proj",
77
+ "model.layers.5.self_attn.k_proj",
78
+ "model.layers.5.self_attn.v_proj",
79
+ "model.layers.5.self_attn.o_proj",
80
+ "model.layers.5.mlp.gate_proj",
81
+ "model.layers.5.mlp.up_proj",
82
+ "model.layers.5.mlp.down_proj",
83
+ "model.layers.6.self_attn.q_proj",
84
+ "model.layers.6.self_attn.k_proj",
85
+ "model.layers.6.self_attn.v_proj",
86
+ "model.layers.6.self_attn.o_proj",
87
+ "model.layers.6.mlp.gate_proj",
88
+ "model.layers.6.mlp.up_proj",
89
+ "model.layers.6.mlp.down_proj",
90
+ "model.layers.7.self_attn.q_proj",
91
+ "model.layers.7.self_attn.k_proj",
92
+ "model.layers.7.self_attn.v_proj",
93
+ "model.layers.7.self_attn.o_proj",
94
+ "model.layers.7.mlp.gate_proj",
95
+ "model.layers.7.mlp.up_proj",
96
+ "model.layers.7.mlp.down_proj",
97
+ "model.layers.8.self_attn.q_proj",
98
+ "model.layers.8.self_attn.k_proj",
99
+ "model.layers.8.self_attn.v_proj",
100
+ "model.layers.8.self_attn.o_proj",
101
+ "model.layers.8.mlp.gate_proj",
102
+ "model.layers.8.mlp.up_proj",
103
+ "model.layers.8.mlp.down_proj",
104
+ "model.layers.9.self_attn.q_proj",
105
+ "model.layers.9.self_attn.k_proj",
106
+ "model.layers.9.self_attn.v_proj",
107
+ "model.layers.9.self_attn.o_proj",
108
+ "model.layers.9.mlp.gate_proj",
109
+ "model.layers.9.mlp.up_proj",
110
+ "model.layers.9.mlp.down_proj",
111
+ "model.layers.10.self_attn.q_proj",
112
+ "model.layers.10.self_attn.k_proj",
113
+ "model.layers.10.self_attn.v_proj",
114
+ "model.layers.10.self_attn.o_proj",
115
+ "model.layers.10.mlp.gate_proj",
116
+ "model.layers.10.mlp.up_proj",
117
+ "model.layers.10.mlp.down_proj",
118
+ "model.layers.11.self_attn.q_proj",
119
+ "model.layers.11.self_attn.k_proj",
120
+ "model.layers.11.self_attn.v_proj",
121
+ "model.layers.11.self_attn.o_proj",
122
+ "model.layers.11.mlp.gate_proj",
123
+ "model.layers.11.mlp.up_proj",
124
+ "model.layers.11.mlp.down_proj",
125
+ "model.layers.12.self_attn.q_proj",
126
+ "model.layers.12.self_attn.k_proj",
127
+ "model.layers.12.self_attn.v_proj",
128
+ "model.layers.12.self_attn.o_proj",
129
+ "model.layers.12.mlp.gate_proj",
130
+ "model.layers.12.mlp.up_proj",
131
+ "model.layers.12.mlp.down_proj",
132
+ "model.layers.13.self_attn.q_proj",
133
+ "model.layers.13.self_attn.k_proj",
134
+ "model.layers.13.self_attn.v_proj",
135
+ "model.layers.13.self_attn.o_proj",
136
+ "model.layers.13.mlp.gate_proj",
137
+ "model.layers.13.mlp.up_proj",
138
+ "model.layers.13.mlp.down_proj",
139
+ "model.layers.14.self_attn.q_proj",
140
+ "model.layers.14.self_attn.k_proj",
141
+ "model.layers.14.self_attn.v_proj",
142
+ "model.layers.14.self_attn.o_proj",
143
+ "model.layers.14.mlp.gate_proj",
144
+ "model.layers.14.mlp.up_proj",
145
+ "model.layers.14.mlp.down_proj",
146
+ "model.layers.15.self_attn.q_proj",
147
+ "model.layers.15.self_attn.k_proj",
148
+ "model.layers.15.self_attn.v_proj",
149
+ "model.layers.15.self_attn.o_proj",
150
+ "model.layers.15.mlp.gate_proj",
151
+ "model.layers.15.mlp.up_proj",
152
+ "model.layers.15.mlp.down_proj",
153
+ "model.layers.16.self_attn.q_proj",
154
+ "model.layers.16.self_attn.k_proj",
155
+ "model.layers.16.self_attn.v_proj",
156
+ "model.layers.16.self_attn.o_proj",
157
+ "model.layers.16.mlp.gate_proj",
158
+ "model.layers.16.mlp.up_proj",
159
+ "model.layers.16.mlp.down_proj",
160
+ "model.layers.17.self_attn.q_proj",
161
+ "model.layers.17.self_attn.k_proj",
162
+ "model.layers.17.self_attn.v_proj",
163
+ "model.layers.17.self_attn.o_proj",
164
+ "model.layers.17.mlp.gate_proj",
165
+ "model.layers.17.mlp.up_proj",
166
+ "model.layers.17.mlp.down_proj",
167
+ "model.layers.18.self_attn.q_proj",
168
+ "model.layers.18.self_attn.k_proj",
169
+ "model.layers.18.self_attn.v_proj",
170
+ "model.layers.18.self_attn.o_proj",
171
+ "model.layers.18.mlp.gate_proj",
172
+ "model.layers.18.mlp.up_proj",
173
+ "model.layers.18.mlp.down_proj",
174
+ "model.layers.19.self_attn.q_proj",
175
+ "model.layers.19.self_attn.k_proj",
176
+ "model.layers.19.self_attn.v_proj",
177
+ "model.layers.19.self_attn.o_proj",
178
+ "model.layers.19.mlp.gate_proj",
179
+ "model.layers.19.mlp.up_proj",
180
+ "model.layers.19.mlp.down_proj",
181
+ "model.layers.20.self_attn.q_proj",
182
+ "model.layers.20.self_attn.k_proj",
183
+ "model.layers.20.self_attn.v_proj",
184
+ "model.layers.20.self_attn.o_proj",
185
+ "model.layers.20.mlp.gate_proj",
186
+ "model.layers.20.mlp.up_proj",
187
+ "model.layers.20.mlp.down_proj",
188
+ "model.layers.21.self_attn.q_proj",
189
+ "model.layers.21.self_attn.k_proj",
190
+ "model.layers.21.self_attn.v_proj",
191
+ "model.layers.21.self_attn.o_proj",
192
+ "model.layers.21.mlp.gate_proj",
193
+ "model.layers.21.mlp.up_proj",
194
+ "model.layers.21.mlp.down_proj",
195
+ "model.layers.22.self_attn.q_proj",
196
+ "model.layers.22.self_attn.k_proj",
197
+ "model.layers.22.self_attn.v_proj",
198
+ "model.layers.22.self_attn.o_proj",
199
+ "model.layers.22.mlp.gate_proj",
200
+ "model.layers.22.mlp.up_proj",
201
+ "model.layers.22.mlp.down_proj",
202
+ "model.layers.23.self_attn.q_proj",
203
+ "model.layers.23.self_attn.k_proj",
204
+ "model.layers.23.self_attn.v_proj",
205
+ "model.layers.23.self_attn.o_proj",
206
+ "model.layers.23.mlp.gate_proj",
207
+ "model.layers.23.mlp.up_proj",
208
+ "model.layers.23.mlp.down_proj",
209
+ "model.layers.24.self_attn.q_proj",
210
+ "model.layers.24.self_attn.k_proj",
211
+ "model.layers.24.self_attn.v_proj",
212
+ "model.layers.24.self_attn.o_proj",
213
+ "model.layers.24.mlp.gate_proj",
214
+ "model.layers.24.mlp.up_proj",
215
+ "model.layers.24.mlp.down_proj",
216
+ "model.layers.25.self_attn.q_proj",
217
+ "model.layers.25.self_attn.k_proj",
218
+ "model.layers.25.self_attn.v_proj",
219
+ "model.layers.25.self_attn.o_proj",
220
+ "model.layers.25.mlp.gate_proj",
221
+ "model.layers.25.mlp.up_proj",
222
+ "model.layers.25.mlp.down_proj",
223
+ "model.layers.26.self_attn.q_proj",
224
+ "model.layers.26.self_attn.k_proj",
225
+ "model.layers.26.self_attn.v_proj",
226
+ "model.layers.26.self_attn.o_proj",
227
+ "model.layers.26.mlp.gate_proj",
228
+ "model.layers.26.mlp.up_proj",
229
+ "model.layers.26.mlp.down_proj",
230
+ "model.layers.27.self_attn.q_proj",
231
+ "model.layers.27.self_attn.k_proj",
232
+ "model.layers.27.self_attn.v_proj",
233
+ "model.layers.27.self_attn.o_proj",
234
+ "model.layers.27.mlp.gate_proj",
235
+ "model.layers.27.mlp.up_proj",
236
+ "model.layers.27.mlp.down_proj",
237
+ "model.layers.28.self_attn.q_proj",
238
+ "model.layers.28.self_attn.k_proj",
239
+ "model.layers.28.self_attn.v_proj",
240
+ "model.layers.28.self_attn.o_proj",
241
+ "model.layers.28.mlp.gate_proj",
242
+ "model.layers.28.mlp.up_proj",
243
+ "model.layers.28.mlp.down_proj",
244
+ "model.layers.29.self_attn.q_proj",
245
+ "model.layers.29.self_attn.k_proj",
246
+ "model.layers.29.self_attn.v_proj",
247
+ "model.layers.29.self_attn.o_proj",
248
+ "model.layers.29.mlp.gate_proj",
249
+ "model.layers.29.mlp.up_proj",
250
+ "model.layers.29.mlp.down_proj",
251
+ "model.layers.30.self_attn.q_proj",
252
+ "model.layers.30.self_attn.k_proj",
253
+ "model.layers.30.self_attn.v_proj",
254
+ "model.layers.30.self_attn.o_proj",
255
+ "model.layers.30.mlp.gate_proj",
256
+ "model.layers.30.mlp.up_proj",
257
+ "model.layers.30.mlp.down_proj",
258
+ "model.layers.31.self_attn.q_proj",
259
+ "model.layers.31.self_attn.k_proj",
260
+ "model.layers.31.self_attn.v_proj",
261
+ "model.layers.31.self_attn.o_proj",
262
+ "model.layers.31.mlp.gate_proj",
263
+ "model.layers.31.mlp.up_proj",
264
+ "model.layers.31.mlp.down_proj",
265
+ "model.layers.32.self_attn.q_proj",
266
+ "model.layers.32.self_attn.k_proj",
267
+ "model.layers.32.self_attn.v_proj",
268
+ "model.layers.32.self_attn.o_proj",
269
+ "model.layers.32.mlp.gate_proj",
270
+ "model.layers.32.mlp.up_proj",
271
+ "model.layers.32.mlp.down_proj",
272
+ "model.layers.33.self_attn.q_proj",
273
+ "model.layers.33.self_attn.k_proj",
274
+ "model.layers.33.self_attn.v_proj",
275
+ "model.layers.33.self_attn.o_proj",
276
+ "model.layers.33.mlp.gate_proj",
277
+ "model.layers.33.mlp.up_proj",
278
+ "model.layers.33.mlp.down_proj",
279
+ "model.layers.34.self_attn.q_proj",
280
+ "model.layers.34.self_attn.k_proj",
281
+ "model.layers.34.self_attn.v_proj",
282
+ "model.layers.34.self_attn.o_proj",
283
+ "model.layers.34.mlp.gate_proj",
284
+ "model.layers.34.mlp.up_proj",
285
+ "model.layers.34.mlp.down_proj",
286
+ "model.layers.35.self_attn.q_proj",
287
+ "model.layers.35.self_attn.k_proj",
288
+ "model.layers.35.self_attn.v_proj",
289
+ "model.layers.35.self_attn.o_proj",
290
+ "model.layers.35.mlp.gate_proj",
291
+ "model.layers.35.mlp.up_proj",
292
+ "model.layers.35.mlp.down_proj",
293
+ "model.layers.36.self_attn.q_proj",
294
+ "model.layers.36.self_attn.k_proj",
295
+ "model.layers.36.self_attn.v_proj",
296
+ "model.layers.36.self_attn.o_proj",
297
+ "model.layers.36.mlp.gate_proj",
298
+ "model.layers.36.mlp.up_proj",
299
+ "model.layers.36.mlp.down_proj",
300
+ "model.layers.37.self_attn.q_proj",
301
+ "model.layers.37.self_attn.k_proj",
302
+ "model.layers.37.self_attn.v_proj",
303
+ "model.layers.37.self_attn.o_proj",
304
+ "model.layers.37.mlp.gate_proj",
305
+ "model.layers.37.mlp.up_proj",
306
+ "model.layers.37.mlp.down_proj",
307
+ "model.layers.38.self_attn.q_proj",
308
+ "model.layers.38.self_attn.k_proj",
309
+ "model.layers.38.self_attn.v_proj",
310
+ "model.layers.38.self_attn.o_proj",
311
+ "model.layers.38.mlp.gate_proj",
312
+ "model.layers.38.mlp.up_proj",
313
+ "model.layers.38.mlp.down_proj",
314
+ "model.layers.39.self_attn.q_proj",
315
+ "model.layers.39.self_attn.k_proj",
316
+ "model.layers.39.self_attn.v_proj",
317
+ "model.layers.39.self_attn.o_proj",
318
+ "model.layers.39.mlp.gate_proj",
319
+ "model.layers.39.mlp.up_proj",
320
+ "model.layers.39.mlp.down_proj",
321
+ "model.layers.40.self_attn.q_proj",
322
+ "model.layers.40.self_attn.k_proj",
323
+ "model.layers.40.self_attn.v_proj",
324
+ "model.layers.40.self_attn.o_proj",
325
+ "model.layers.40.mlp.gate_proj",
326
+ "model.layers.40.mlp.up_proj",
327
+ "model.layers.40.mlp.down_proj",
328
+ "model.layers.41.self_attn.q_proj",
329
+ "model.layers.41.self_attn.k_proj",
330
+ "model.layers.41.self_attn.v_proj",
331
+ "model.layers.41.self_attn.o_proj",
332
+ "model.layers.41.mlp.gate_proj",
333
+ "model.layers.41.mlp.up_proj",
334
+ "model.layers.41.mlp.down_proj",
335
+ "model.layers.42.self_attn.q_proj",
336
+ "model.layers.42.self_attn.k_proj",
337
+ "model.layers.42.self_attn.v_proj",
338
+ "model.layers.42.self_attn.o_proj",
339
+ "model.layers.42.mlp.gate_proj",
340
+ "model.layers.42.mlp.up_proj",
341
+ "model.layers.42.mlp.down_proj",
342
+ "model.layers.43.self_attn.q_proj",
343
+ "model.layers.43.self_attn.k_proj",
344
+ "model.layers.43.self_attn.v_proj",
345
+ "model.layers.43.self_attn.o_proj",
346
+ "model.layers.43.mlp.gate_proj",
347
+ "model.layers.43.mlp.up_proj",
348
+ "model.layers.43.mlp.down_proj",
349
+ "model.layers.44.self_attn.q_proj",
350
+ "model.layers.44.self_attn.k_proj",
351
+ "model.layers.44.self_attn.v_proj",
352
+ "model.layers.44.self_attn.o_proj",
353
+ "model.layers.44.mlp.gate_proj",
354
+ "model.layers.44.mlp.up_proj",
355
+ "model.layers.44.mlp.down_proj",
356
+ "model.layers.45.self_attn.q_proj",
357
+ "model.layers.45.self_attn.k_proj",
358
+ "model.layers.45.self_attn.v_proj",
359
+ "model.layers.45.self_attn.o_proj",
360
+ "model.layers.45.mlp.gate_proj",
361
+ "model.layers.45.mlp.up_proj",
362
+ "model.layers.45.mlp.down_proj",
363
+ "model.layers.46.self_attn.q_proj",
364
+ "model.layers.46.self_attn.k_proj",
365
+ "model.layers.46.self_attn.v_proj",
366
+ "model.layers.46.self_attn.o_proj",
367
+ "model.layers.46.mlp.gate_proj",
368
+ "model.layers.46.mlp.up_proj",
369
+ "model.layers.46.mlp.down_proj",
370
+ "model.layers.47.self_attn.q_proj",
371
+ "model.layers.47.self_attn.k_proj",
372
+ "model.layers.47.self_attn.v_proj",
373
+ "model.layers.47.self_attn.o_proj",
374
+ "model.layers.47.mlp.gate_proj",
375
+ "model.layers.47.mlp.up_proj",
376
+ "model.layers.47.mlp.down_proj",
377
+ "model.layers.48.self_attn.q_proj",
378
+ "model.layers.48.self_attn.k_proj",
379
+ "model.layers.48.self_attn.v_proj",
380
+ "model.layers.48.self_attn.o_proj",
381
+ "model.layers.48.mlp.gate_proj",
382
+ "model.layers.48.mlp.up_proj",
383
+ "model.layers.48.mlp.down_proj",
384
+ "model.layers.49.self_attn.q_proj",
385
+ "model.layers.49.self_attn.k_proj",
386
+ "model.layers.49.self_attn.v_proj",
387
+ "model.layers.49.self_attn.o_proj",
388
+ "model.layers.49.mlp.gate_proj",
389
+ "model.layers.49.mlp.up_proj",
390
+ "model.layers.49.mlp.down_proj",
391
+ "model.layers.50.self_attn.q_proj",
392
+ "model.layers.50.self_attn.k_proj",
393
+ "model.layers.50.self_attn.v_proj",
394
+ "model.layers.50.self_attn.o_proj",
395
+ "model.layers.50.mlp.gate_proj",
396
+ "model.layers.50.mlp.up_proj",
397
+ "model.layers.50.mlp.down_proj",
398
+ "model.layers.51.self_attn.q_proj",
399
+ "model.layers.51.self_attn.k_proj",
400
+ "model.layers.51.self_attn.v_proj",
401
+ "model.layers.51.self_attn.o_proj",
402
+ "model.layers.51.mlp.gate_proj",
403
+ "model.layers.51.mlp.up_proj",
404
+ "model.layers.51.mlp.down_proj",
405
+ "model.layers.52.self_attn.q_proj",
406
+ "model.layers.52.self_attn.k_proj",
407
+ "model.layers.52.self_attn.v_proj",
408
+ "model.layers.52.self_attn.o_proj",
409
+ "model.layers.52.mlp.gate_proj",
410
+ "model.layers.52.mlp.up_proj",
411
+ "model.layers.52.mlp.down_proj",
412
+ "model.layers.53.self_attn.q_proj",
413
+ "model.layers.53.self_attn.k_proj",
414
+ "model.layers.53.self_attn.v_proj",
415
+ "model.layers.53.self_attn.o_proj",
416
+ "model.layers.53.mlp.gate_proj",
417
+ "model.layers.53.mlp.up_proj",
418
+ "model.layers.53.mlp.down_proj",
419
+ "model.layers.54.self_attn.q_proj",
420
+ "model.layers.54.self_attn.k_proj",
421
+ "model.layers.54.self_attn.v_proj",
422
+ "model.layers.54.self_attn.o_proj",
423
+ "model.layers.54.mlp.gate_proj",
424
+ "model.layers.54.mlp.up_proj",
425
+ "model.layers.54.mlp.down_proj",
426
+ "model.layers.55.self_attn.q_proj",
427
+ "model.layers.55.self_attn.k_proj",
428
+ "model.layers.55.self_attn.v_proj",
429
+ "model.layers.55.self_attn.o_proj",
430
+ "model.layers.55.mlp.gate_proj",
431
+ "model.layers.55.mlp.up_proj",
432
+ "model.layers.55.mlp.down_proj",
433
+ "model.layers.56.self_attn.q_proj",
434
+ "model.layers.56.self_attn.k_proj",
435
+ "model.layers.56.self_attn.v_proj",
436
+ "model.layers.56.self_attn.o_proj",
437
+ "model.layers.56.mlp.gate_proj",
438
+ "model.layers.56.mlp.up_proj",
439
+ "model.layers.56.mlp.down_proj",
440
+ "model.layers.57.self_attn.q_proj",
441
+ "model.layers.57.self_attn.k_proj",
442
+ "model.layers.57.self_attn.v_proj",
443
+ "model.layers.57.self_attn.o_proj",
444
+ "model.layers.57.mlp.gate_proj",
445
+ "model.layers.57.mlp.up_proj",
446
+ "model.layers.57.mlp.down_proj",
447
+ "model.layers.58.self_attn.q_proj",
448
+ "model.layers.58.self_attn.k_proj",
449
+ "model.layers.58.self_attn.v_proj",
450
+ "model.layers.58.self_attn.o_proj",
451
+ "model.layers.58.mlp.gate_proj",
452
+ "model.layers.58.mlp.up_proj",
453
+ "model.layers.58.mlp.down_proj",
454
+ "model.layers.59.self_attn.q_proj",
455
+ "model.layers.59.self_attn.k_proj",
456
+ "model.layers.59.self_attn.v_proj",
457
+ "model.layers.59.self_attn.o_proj",
458
+ "model.layers.59.mlp.gate_proj",
459
+ "model.layers.59.mlp.up_proj",
460
+ "model.layers.59.mlp.down_proj",
461
+ "model.layers.60.self_attn.q_proj",
462
+ "model.layers.60.self_attn.k_proj",
463
+ "model.layers.60.self_attn.v_proj",
464
+ "model.layers.60.self_attn.o_proj",
465
+ "model.layers.60.mlp.gate_proj",
466
+ "model.layers.60.mlp.up_proj",
467
+ "model.layers.60.mlp.down_proj",
468
+ "model.layers.61.self_attn.q_proj",
469
+ "model.layers.61.self_attn.k_proj",
470
+ "model.layers.61.self_attn.v_proj",
471
+ "model.layers.61.self_attn.o_proj",
472
+ "model.layers.61.mlp.gate_proj",
473
+ "model.layers.61.mlp.up_proj",
474
+ "model.layers.61.mlp.down_proj",
475
+ "model.layers.62.self_attn.q_proj",
476
+ "model.layers.62.self_attn.k_proj",
477
+ "model.layers.62.self_attn.v_proj",
478
+ "model.layers.62.self_attn.o_proj",
479
+ "model.layers.62.mlp.gate_proj",
480
+ "model.layers.62.mlp.up_proj",
481
+ "model.layers.62.mlp.down_proj",
482
+ "model.layers.63.self_attn.q_proj",
483
+ "model.layers.63.self_attn.k_proj",
484
+ "model.layers.63.self_attn.v_proj",
485
+ "model.layers.63.self_attn.o_proj",
486
+ "model.layers.63.mlp.gate_proj",
487
+ "model.layers.63.mlp.up_proj",
488
+ "model.layers.63.mlp.down_proj",
489
+ "lm_head"
490
+ ],
491
+ "registry_requires_subclass": false,
492
+ "sparsity_structure": "unstructured",
493
+ "targets": [
494
+ "model.layers.1.self_attn.q_proj",
495
+ "model.layers.1.self_attn.k_proj",
496
+ "model.layers.1.mlp.gate_proj",
497
+ "model.layers.1.mlp.up_proj",
498
+ "model.layers.1.mlp.down_proj",
499
+ "model.layers.2.self_attn.q_proj",
500
+ "model.layers.2.self_attn.k_proj",
501
+ "model.layers.2.mlp.gate_proj",
502
+ "model.layers.2.mlp.down_proj",
503
+ "model.layers.3.mlp.gate_proj",
504
+ "model.layers.3.mlp.down_proj",
505
+ "model.layers.4.mlp.down_proj"
506
+ ]
507
+ }
508
+ },
509
+ "rms_norm_eps": 1e-05,
510
+ "rope_scaling": null,
511
+ "rope_theta": 1000000.0,
512
+ "sliding_window": null,
513
+ "tie_word_embeddings": false,
514
+ "torch_dtype": "bfloat16",
515
+ "transformers_version": "4.47.1",
516
+ "use_cache": false,
517
+ "use_sliding_window": false,
518
+ "vocab_size": 152064
519
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.7,
10
+ "top_k": 20,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.47.1"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e906720b340df84f96383113369aa96a75d5f5269e432fa5887ea08d98cdca86
3
+ size 4931437664
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dce2fe5eb6e0daf0b24903c83b3a725a50cac578c566dc4549d4961643565345
3
+ size 4956016432
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155fd062cee37c1fe7bbe64011b98dec710aee99b8e6dad4a7021a34e81aaa50
3
+ size 4996551064
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:974e44e1cf36bb0729b5a8d605514e3551a6f6df45f5fb2c4f31a900ee987cea
3
+ size 4323099720
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
recipe.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEFAULT_stage:
2
+ DEFAULT_modifiers:
3
+ GPTQModifier:
4
+ sequential_update: true
5
+ targets: [Linear]
6
+ dampening_frac: 0.1
7
+ config_groups:
8
+ group_0:
9
+ targets: [Linear]
10
+ weights: {num_bits: 4, type: int, symmetric: true, group_size: 128, strategy: group,
11
+ actorder: null, observer: minmax}
12
+ input_activations: null
13
+ output_activations: null
14
+ ignore: [lm_head]
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff