Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen3-8B
|
7 |
+
tags:
|
8 |
+
- neuralmagic
|
9 |
+
- redhat
|
10 |
+
- llmcompressor
|
11 |
+
- quantized
|
12 |
+
- INT4
|
13 |
+
---
|
14 |
+
|
15 |
+
# Qwen3-8B-quantized.w4a16
|
16 |
+
|
17 |
+
## Model Overview
|
18 |
+
- **Model Architecture:** Qwen3ForCausalLM
|
19 |
+
- **Input:** Text
|
20 |
+
- **Output:** Text
|
21 |
+
- **Model Optimizations:**
|
22 |
+
- **Weight quantization:** INT4
|
23 |
+
- **Intended Use Cases:**
|
24 |
+
- Reasoning.
|
25 |
+
- Function calling.
|
26 |
+
- Subject matter experts via fine-tuning.
|
27 |
+
- Multilingual instruction following.
|
28 |
+
- Translation.
|
29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
|
30 |
+
- **Release Date:** 05/05/2025
|
31 |
+
- **Version:** 1.0
|
32 |
+
- **Model Developers:** RedHat (Neural Magic)
|
33 |
+
|
34 |
+
### Model Optimizations
|
35 |
+
|
36 |
+
This model was obtained by quantizing the weights of [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) to INT4 data type.
|
37 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
|
38 |
+
|
39 |
+
Only the weights of the linear operators within transformers blocks are quantized.
|
40 |
+
Weights are quantized using a asymmetric per-group scheme, with group size 64.
|
41 |
+
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
|
42 |
+
|
43 |
+
|
44 |
+
## Deployment
|
45 |
+
|
46 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
47 |
+
|
48 |
+
```python
|
49 |
+
from vllm import LLM, SamplingParams
|
50 |
+
from transformers import AutoTokenizer
|
51 |
+
|
52 |
+
model_id = "RedHatAI/Qwen3-8B-quantized.w4a16"
|
53 |
+
number_gpus = 1
|
54 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{"role": "user", "content": prompt}
|
58 |
+
]
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
+
|
62 |
+
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
|
63 |
+
|
64 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
65 |
+
|
66 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
67 |
+
|
68 |
+
outputs = llm.generate(prompts, sampling_params)
|
69 |
+
|
70 |
+
generated_text = outputs[0].outputs[0].text
|
71 |
+
print(generated_text)
|
72 |
+
```
|
73 |
+
|
74 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
75 |
+
|
76 |
+
## Creation
|
77 |
+
|
78 |
+
<details>
|
79 |
+
<summary>Creation details</summary>
|
80 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
81 |
+
|
82 |
+
|
83 |
+
```python
|
84 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
85 |
+
from llmcompressor.transformers import oneshot
|
86 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
87 |
+
|
88 |
+
# Load model
|
89 |
+
model_stub = "Qwen/Qwen3-8B"
|
90 |
+
model_name = model_stub.split("/")[-1]
|
91 |
+
|
92 |
+
num_samples = 1024
|
93 |
+
max_seq_len = 8192
|
94 |
+
|
95 |
+
model = AutoModelForCausalLM.from_pretrained(model_stub)
|
96 |
+
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
98 |
+
|
99 |
+
def preprocess_fn(example):
|
100 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
|
101 |
+
|
102 |
+
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
|
103 |
+
ds = ds.map(preprocess_fn)
|
104 |
+
|
105 |
+
# Configure the quantization algorithm and scheme
|
106 |
+
recipe = GPTQModifier(
|
107 |
+
ignore=["lm_head"],
|
108 |
+
sequential_targets=["Qwen3DecoderLayer"],
|
109 |
+
targets="Linear",
|
110 |
+
dampening_frac=0.01,
|
111 |
+
scheme="W4A16",
|
112 |
+
)
|
113 |
+
|
114 |
+
# Apply quantization
|
115 |
+
oneshot(
|
116 |
+
model=model,
|
117 |
+
dataset=ds,
|
118 |
+
recipe=recipe,
|
119 |
+
max_seq_length=max_seq_len,
|
120 |
+
num_calibration_samples=num_samples,
|
121 |
+
)
|
122 |
+
|
123 |
+
# Save to disk in compressed-tensors format
|
124 |
+
save_path = model_name + "-quantized.w4a16"
|
125 |
+
model.save_pretrained(save_path)
|
126 |
+
tokenizer.save_pretrained(save_path)
|
127 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
128 |
+
```
|
129 |
+
</details>
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
## Evaluation
|
134 |
+
|
135 |
+
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning).
|
136 |
+
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
|
137 |
+
|
138 |
+
<details>
|
139 |
+
<summary>Evaluation details</summary>
|
140 |
+
|
141 |
+
**lm-evaluation-harness**
|
142 |
+
```
|
143 |
+
lm_eval \
|
144 |
+
--model vllm \
|
145 |
+
--model_args pretrained="RedHatAI/Qwen3-8B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
146 |
+
--tasks openllm \
|
147 |
+
--apply_chat_template\
|
148 |
+
--fewshot_as_multiturn \
|
149 |
+
--batch_size auto
|
150 |
+
```
|
151 |
+
|
152 |
+
```
|
153 |
+
lm_eval \
|
154 |
+
--model vllm \
|
155 |
+
--model_args pretrained="RedHatAI/Qwen3-8B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
156 |
+
--tasks mgsm \
|
157 |
+
--apply_chat_template\
|
158 |
+
--batch_size auto
|
159 |
+
```
|
160 |
+
|
161 |
+
```
|
162 |
+
lm_eval \
|
163 |
+
--model vllm \
|
164 |
+
--model_args pretrained="RedHatAI/Qwen3-8B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
165 |
+
--tasks leaderboard \
|
166 |
+
--apply_chat_template\
|
167 |
+
--fewshot_as_multiturn \
|
168 |
+
--batch_size auto
|
169 |
+
```
|
170 |
+
|
171 |
+
**lighteval**
|
172 |
+
|
173 |
+
lighteval_model_arguments.yaml
|
174 |
+
```yaml
|
175 |
+
model_parameters:
|
176 |
+
model_name: RedHatAI/Qwen3-8B-quantized.w4a16
|
177 |
+
dtype: auto
|
178 |
+
gpu_memory_utilization: 0.9
|
179 |
+
max_model_length: 40960
|
180 |
+
generation_parameters:
|
181 |
+
temperature: 0.6
|
182 |
+
top_k: 20
|
183 |
+
min_p: 0.0
|
184 |
+
top_p: 0.95
|
185 |
+
max_new_tokens: 32768
|
186 |
+
```
|
187 |
+
|
188 |
+
```
|
189 |
+
lighteval vllm \
|
190 |
+
--model_args lighteval_model_arguments.yaml \
|
191 |
+
--tasks lighteval|aime24|0|0 \
|
192 |
+
--use_chat_template = true
|
193 |
+
```
|
194 |
+
|
195 |
+
```
|
196 |
+
lighteval vllm \
|
197 |
+
--model_args lighteval_model_arguments.yaml \
|
198 |
+
--tasks lighteval|aime25|0|0 \
|
199 |
+
--use_chat_template = true
|
200 |
+
```
|
201 |
+
|
202 |
+
```
|
203 |
+
lighteval vllm \
|
204 |
+
--model_args lighteval_model_arguments.yaml \
|
205 |
+
--tasks lighteval|math_500|0|0 \
|
206 |
+
--use_chat_template = true
|
207 |
+
```
|
208 |
+
|
209 |
+
```
|
210 |
+
lighteval vllm \
|
211 |
+
--model_args lighteval_model_arguments.yaml \
|
212 |
+
--tasks lighteval|gpqa:diamond|0|0 \
|
213 |
+
--use_chat_template = true
|
214 |
+
```
|
215 |
+
|
216 |
+
```
|
217 |
+
lighteval vllm \
|
218 |
+
--model_args lighteval_model_arguments.yaml \
|
219 |
+
--tasks extended|lcb:codegeneration \
|
220 |
+
--use_chat_template = true
|
221 |
+
```
|
222 |
+
|
223 |
+
</details>
|
224 |
+
|
225 |
+
### Accuracy
|
226 |
+
|
227 |
+
<table>
|
228 |
+
<tr>
|
229 |
+
<th>Category
|
230 |
+
</th>
|
231 |
+
<th>Benchmark
|
232 |
+
</th>
|
233 |
+
<th>Qwen3-8B
|
234 |
+
</th>
|
235 |
+
<th>Qwen3-8B-quantized.w4a16<br>(this model)
|
236 |
+
</th>
|
237 |
+
<th>Recovery
|
238 |
+
</th>
|
239 |
+
</tr>
|
240 |
+
<tr>
|
241 |
+
<td rowspan="7" ><strong>OpenLLM v1</strong>
|
242 |
+
</td>
|
243 |
+
<td>MMLU (5-shot)
|
244 |
+
</td>
|
245 |
+
<td>71.95
|
246 |
+
</td>
|
247 |
+
<td>69.74
|
248 |
+
</td>
|
249 |
+
<td>96.9%
|
250 |
+
</td>
|
251 |
+
</tr>
|
252 |
+
<tr>
|
253 |
+
<td>ARC Challenge (25-shot)
|
254 |
+
</td>
|
255 |
+
<td>61.69
|
256 |
+
</td>
|
257 |
+
<td>61.77
|
258 |
+
</td>
|
259 |
+
<td>100.1%
|
260 |
+
</td>
|
261 |
+
</tr>
|
262 |
+
<tr>
|
263 |
+
<td>GSM-8K (5-shot, strict-match)
|
264 |
+
</td>
|
265 |
+
<td>75.97
|
266 |
+
</td>
|
267 |
+
<td>78.62
|
268 |
+
</td>
|
269 |
+
<td>103.5%
|
270 |
+
</td>
|
271 |
+
</tr>
|
272 |
+
<tr>
|
273 |
+
<td>Hellaswag (10-shot)
|
274 |
+
</td>
|
275 |
+
<td>56.52
|
276 |
+
</td>
|
277 |
+
<td>57.79
|
278 |
+
</td>
|
279 |
+
<td>102.2%
|
280 |
+
</td>
|
281 |
+
</tr>
|
282 |
+
<tr>
|
283 |
+
<td>Winogrande (5-shot)
|
284 |
+
</td>
|
285 |
+
<td>65.98
|
286 |
+
</td>
|
287 |
+
<td>66.22
|
288 |
+
</td>
|
289 |
+
<td>100.4%
|
290 |
+
</td>
|
291 |
+
</tr>
|
292 |
+
<tr>
|
293 |
+
<td>TruthfulQA (0-shot, mc2)
|
294 |
+
</td>
|
295 |
+
<td>53.17
|
296 |
+
</td>
|
297 |
+
<td>53.71
|
298 |
+
</td>
|
299 |
+
<td>101.0%
|
300 |
+
</td>
|
301 |
+
</tr>
|
302 |
+
<tr>
|
303 |
+
<td><strong>Average</strong>
|
304 |
+
</td>
|
305 |
+
<td><strong>64.21</strong>
|
306 |
+
</td>
|
307 |
+
<td><strong>64.64</strong>
|
308 |
+
</td>
|
309 |
+
<td><strong>100.7%</strong>
|
310 |
+
</td>
|
311 |
+
</tr>
|
312 |
+
<tr>
|
313 |
+
<td rowspan="7" ><strong>OpenLLM v2</strong>
|
314 |
+
</td>
|
315 |
+
<td>MMLU-Pro (5-shot)
|
316 |
+
</td>
|
317 |
+
<td>34.57
|
318 |
+
</td>
|
319 |
+
<td>25.71
|
320 |
+
</td>
|
321 |
+
<td>74.4%
|
322 |
+
</td>
|
323 |
+
</tr>
|
324 |
+
<tr>
|
325 |
+
<td>IFEval (0-shot)
|
326 |
+
</td>
|
327 |
+
<td>84.77
|
328 |
+
</td>
|
329 |
+
<td>85.44
|
330 |
+
</td>
|
331 |
+
<td>100.8%
|
332 |
+
</td>
|
333 |
+
</tr>
|
334 |
+
<tr>
|
335 |
+
<td>BBH (3-shot)
|
336 |
+
</td>
|
337 |
+
<td>25.47
|
338 |
+
</td>
|
339 |
+
<td>21.17
|
340 |
+
</td>
|
341 |
+
<td>83.1%
|
342 |
+
</td>
|
343 |
+
</tr>
|
344 |
+
<tr>
|
345 |
+
<td>Math-lvl-5 (4-shot)
|
346 |
+
</td>
|
347 |
+
<td>51.05
|
348 |
+
</td>
|
349 |
+
<td>51.38
|
350 |
+
</td>
|
351 |
+
<td>100.7%
|
352 |
+
</td>
|
353 |
+
</tr>
|
354 |
+
<tr>
|
355 |
+
<td>GPQA (0-shot)
|
356 |
+
</td>
|
357 |
+
<td>0.00
|
358 |
+
</td>
|
359 |
+
<td>0.00
|
360 |
+
</td>
|
361 |
+
<td>---
|
362 |
+
</td>
|
363 |
+
</tr>
|
364 |
+
<tr>
|
365 |
+
<td>MuSR (0-shot)
|
366 |
+
</td>
|
367 |
+
<td>10.02
|
368 |
+
</td>
|
369 |
+
<td>9.31
|
370 |
+
</td>
|
371 |
+
<td>---
|
372 |
+
</td>
|
373 |
+
</tr>
|
374 |
+
<tr>
|
375 |
+
<td><strong>Average</strong>
|
376 |
+
</td>
|
377 |
+
<td><strong>34.26</strong>
|
378 |
+
</td>
|
379 |
+
<td><strong>33.46</strong>
|
380 |
+
</td>
|
381 |
+
<td><strong>97.7%</strong>
|
382 |
+
</td>
|
383 |
+
</tr>
|
384 |
+
<tr>
|
385 |
+
<td><strong>Multilingual</strong>
|
386 |
+
</td>
|
387 |
+
<td>MGSM (0-shot)
|
388 |
+
</td>
|
389 |
+
<td>25.97
|
390 |
+
</td>
|
391 |
+
<td>24.73
|
392 |
+
</td>
|
393 |
+
<td>95.3%
|
394 |
+
</td>
|
395 |
+
</tr>
|
396 |
+
<tr>
|
397 |
+
<td rowspan="6" ><strong>Reasoning<br>(generation)</strong>
|
398 |
+
</td>
|
399 |
+
<td>AIME 2024
|
400 |
+
</td>
|
401 |
+
<td>74.58
|
402 |
+
</td>
|
403 |
+
<td>74.17
|
404 |
+
</td>
|
405 |
+
<td>99.5%
|
406 |
+
</td>
|
407 |
+
</tr>
|
408 |
+
<tr>
|
409 |
+
<td>AIME 2025
|
410 |
+
</td>
|
411 |
+
<td>65.21
|
412 |
+
</td>
|
413 |
+
<td>61.98
|
414 |
+
</td>
|
415 |
+
<td>95.1%
|
416 |
+
</td>
|
417 |
+
</tr>
|
418 |
+
<tr>
|
419 |
+
<td>GPQA diamond
|
420 |
+
</td>
|
421 |
+
<td>58.59
|
422 |
+
</td>
|
423 |
+
<td>55.56
|
424 |
+
</td>
|
425 |
+
<td>94.8%
|
426 |
+
</td>
|
427 |
+
</tr>
|
428 |
+
<tr>
|
429 |
+
<td>Math-lvl-5
|
430 |
+
</td>
|
431 |
+
<td>97.60
|
432 |
+
</td>
|
433 |
+
<td>96.20
|
434 |
+
</td>
|
435 |
+
<td>98.6%
|
436 |
+
</td>
|
437 |
+
</tr>
|
438 |
+
<tr>
|
439 |
+
<td>LiveCodeBench
|
440 |
+
</td>
|
441 |
+
<td>56.27
|
442 |
+
</td>
|
443 |
+
<td>52.29
|
444 |
+
</td>
|
445 |
+
<td>92.9%
|
446 |
+
</td>
|
447 |
+
</tr>
|
448 |
+
</table>
|