Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,259 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- vllm
|
4 |
+
- vision
|
5 |
+
- audio
|
6 |
+
- fp8
|
7 |
+
license: mit
|
8 |
+
base_model: google/gemma-3n-E4B-it
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# RedHatAI/gemma-3n-E4B-it-FP8-Dynamic
|
13 |
+
|
14 |
+
## Model Overview
|
15 |
+
- **Model Architecture:** gemma-3n-E4B-it
|
16 |
+
- **Input:** Audio-Vision-Text
|
17 |
+
- **Output:** Text
|
18 |
+
- **Model Optimizations:**
|
19 |
+
- **Weight quantization:** FP8
|
20 |
+
- **Activation quantization:** FP8
|
21 |
+
- **Release Date:** 08/01/2025
|
22 |
+
- **Version:** 1.0
|
23 |
+
- **Model Developers:** RedHatAI
|
24 |
+
|
25 |
+
Quantized version of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it).
|
26 |
+
|
27 |
+
### Model Optimizations
|
28 |
+
|
29 |
+
This model was obtained by quantizing the weights of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it) to FP8 data type, ready for inference with vLLM >= 0.10.0
|
30 |
+
|
31 |
+
## Deployment
|
32 |
+
|
33 |
+
### Use with vLLM
|
34 |
+
|
35 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
36 |
+
|
37 |
+
```python
|
38 |
+
from vllm.assets.image import ImageAsset
|
39 |
+
from vllm import LLM, SamplingParams
|
40 |
+
|
41 |
+
# prepare model
|
42 |
+
llm = LLM(
|
43 |
+
model="RedHatAI/gemma-3n-E4B-it-FP8-Dynamic",
|
44 |
+
trust_remote_code=True,
|
45 |
+
max_model_len=4096,
|
46 |
+
max_num_seqs=2,
|
47 |
+
)
|
48 |
+
|
49 |
+
# prepare inputs
|
50 |
+
question = "What is the content of this image?"
|
51 |
+
inputs = {
|
52 |
+
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
|
53 |
+
"multi_modal_data": {
|
54 |
+
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
55 |
+
},
|
56 |
+
}
|
57 |
+
|
58 |
+
# generate response
|
59 |
+
print("========== SAMPLE GENERATION ==============")
|
60 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
|
61 |
+
print(f"PROMPT : {outputs[0].prompt}")
|
62 |
+
print(f"RESPONSE: {outputs[0].outputs[0].text}")
|
63 |
+
print("==========================================")
|
64 |
+
```
|
65 |
+
|
66 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
67 |
+
|
68 |
+
## Creation
|
69 |
+
|
70 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
71 |
+
|
72 |
+
<details>
|
73 |
+
<summary>Model Creation Code</summary>
|
74 |
+
|
75 |
+
```python
|
76 |
+
from llmcompressor import oneshot
|
77 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
78 |
+
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
79 |
+
|
80 |
+
# Load model.
|
81 |
+
model_id = "google/gemma-3n-E4B-it"
|
82 |
+
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
83 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
84 |
+
|
85 |
+
# Recipe
|
86 |
+
recipe = [
|
87 |
+
QuantizationModifier(
|
88 |
+
targets="Linear",
|
89 |
+
scheme="FP8_DYNAMIC",
|
90 |
+
ignore=[
|
91 |
+
"re:.*embed_audio.*",
|
92 |
+
"re:.*embed_vision.*",
|
93 |
+
"re:.*audio_tower.*",
|
94 |
+
"re:.*vision_tower.*",
|
95 |
+
"re:.*altup.*",
|
96 |
+
"re:.*lm_head.*",
|
97 |
+
"re:.*laurel.*",
|
98 |
+
"re:model\.language_model\.layers\.\d+\.per_layer_input_gate",
|
99 |
+
"re:model\.language_model\.layers\.\d+\.per_layer_projection",
|
100 |
+
"model.language_model.per_layer_model_projection",
|
101 |
+
],
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
SAVE_DIR = f"{model_id.split('/')[1]}-{recipe[0].scheme}"
|
106 |
+
|
107 |
+
# Perform oneshot
|
108 |
+
oneshot(
|
109 |
+
model=model,
|
110 |
+
tokenizer=model_id,
|
111 |
+
recipe=recipe,
|
112 |
+
trust_remote_code_model=True,
|
113 |
+
tie_word_embeddings=True,
|
114 |
+
output_dir=SAVE_DIR,
|
115 |
+
)
|
116 |
+
|
117 |
+
# Save to disk compressed.
|
118 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
119 |
+
processor.save_pretrained(SAVE_DIR)
|
120 |
+
|
121 |
+
|
122 |
+
```
|
123 |
+
</details>
|
124 |
+
|
125 |
+
## Evaluation
|
126 |
+
|
127 |
+
The model was evaluated using [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands:
|
128 |
+
|
129 |
+
<details>
|
130 |
+
<summary>Evaluation Commands</summary>
|
131 |
+
|
132 |
+
### OpenLLM V1
|
133 |
+
|
134 |
+
```
|
135 |
+
lm_eval \
|
136 |
+
--model vllm \
|
137 |
+
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
|
138 |
+
--tasks openllm \
|
139 |
+
--batch_size auto \
|
140 |
+
--apply_chat_template \
|
141 |
+
--fewshot_as_multiturn
|
142 |
+
|
143 |
+
```
|
144 |
+
|
145 |
+
### Leaderboard V2
|
146 |
+
|
147 |
+
```
|
148 |
+
lm_eval \
|
149 |
+
--model vllm \
|
150 |
+
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
|
151 |
+
--tasks leaderboard \
|
152 |
+
--batch_size auto \
|
153 |
+
--apply_chat_template \
|
154 |
+
--fewshot_as_multiturn
|
155 |
+
|
156 |
+
```
|
157 |
+
</details>
|
158 |
+
|
159 |
+
### Accuracy
|
160 |
+
|
161 |
+
<table>
|
162 |
+
<thead>
|
163 |
+
<tr>
|
164 |
+
<th>Category</th>
|
165 |
+
<th>Metric</th>
|
166 |
+
<th>google/gemma-3n-E4B-it</th>
|
167 |
+
<th>FP8 Dynamic</th>
|
168 |
+
<th>Recovery (%)</th>
|
169 |
+
</tr>
|
170 |
+
</thead>
|
171 |
+
<tbody>
|
172 |
+
<tr>
|
173 |
+
<td rowspan="7"><b>OpenLLM V1</b></td>
|
174 |
+
<td>arc_challenge</td>
|
175 |
+
<td>60.24</td>
|
176 |
+
<td>59.04</td>
|
177 |
+
<td>98.01%</td>
|
178 |
+
</tr>
|
179 |
+
<tr>
|
180 |
+
<td>gsm8k</td>
|
181 |
+
<td>60.12</td>
|
182 |
+
<td>70.81</td>
|
183 |
+
<td>117.79%</td>
|
184 |
+
</tr>
|
185 |
+
<tr>
|
186 |
+
<td>hellaswag</td>
|
187 |
+
<td>74.94</td>
|
188 |
+
<td>73.28</td>
|
189 |
+
<td>97.79%</td>
|
190 |
+
</tr>
|
191 |
+
<tr>
|
192 |
+
<td>mmlu</td>
|
193 |
+
<td>64.14</td>
|
194 |
+
<td>64.82</td>
|
195 |
+
<td>101.06%</td>
|
196 |
+
</tr>
|
197 |
+
<tr>
|
198 |
+
<td>truthfulqa_mc2</td>
|
199 |
+
<td>54.87</td>
|
200 |
+
<td>54.61</td>
|
201 |
+
<td>99.53%</td>
|
202 |
+
</tr>
|
203 |
+
<tr>
|
204 |
+
<td>winogrande</td>
|
205 |
+
<td>68.35</td>
|
206 |
+
<td>67.72</td>
|
207 |
+
<td>99.08%</td>
|
208 |
+
</tr>
|
209 |
+
<tr>
|
210 |
+
<td><b>Average</b></td>
|
211 |
+
<td>63.78</td>
|
212 |
+
<td>65.05</td>
|
213 |
+
<td><b>101.99%</b></td>
|
214 |
+
</tr>
|
215 |
+
<tr>
|
216 |
+
<td rowspan="7"><b>Leaderboard</b></td>
|
217 |
+
<td>bbh</td>
|
218 |
+
<td>55.46</td>
|
219 |
+
<td>55.20</td>
|
220 |
+
<td>99.53%</td>
|
221 |
+
</tr>
|
222 |
+
<tr>
|
223 |
+
<td>mmlu_pro</td>
|
224 |
+
<td>34.38</td>
|
225 |
+
<td>34.28</td>
|
226 |
+
<td>99.71%</td>
|
227 |
+
</tr>
|
228 |
+
<tr>
|
229 |
+
<td>musr</td>
|
230 |
+
<td>33.20</td>
|
231 |
+
<td>34.26</td>
|
232 |
+
<td>103.19%</td>
|
233 |
+
</tr>
|
234 |
+
<tr>
|
235 |
+
<td>ifeval</td>
|
236 |
+
<td>84.41</td>
|
237 |
+
<td>83.93</td>
|
238 |
+
<td>99.43%</td>
|
239 |
+
</tr>
|
240 |
+
<tr>
|
241 |
+
<td>gpqa</td>
|
242 |
+
<td>30.87</td>
|
243 |
+
<td>31.38</td>
|
244 |
+
<td>101.65%</td>
|
245 |
+
</tr>
|
246 |
+
<tr>
|
247 |
+
<td>math_hard</td>
|
248 |
+
<td>45.54</td>
|
249 |
+
<td>46.60</td>
|
250 |
+
<td>102.33%</td>
|
251 |
+
</tr>
|
252 |
+
<tr>
|
253 |
+
<td><b>Average</b></td>
|
254 |
+
<td>47.31</td>
|
255 |
+
<td>47.61</td>
|
256 |
+
<td><b>100.63%</b></td>
|
257 |
+
</tr>
|
258 |
+
</tbody>
|
259 |
+
</table>
|