RichardErkhov commited on
Commit
b7bd1cf
·
verified ·
1 Parent(s): 2ad3f76

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ medinote-7b - GGUF
11
+ - Model creator: https://huggingface.co/AGBonnet/
12
+ - Original model: https://huggingface.co/AGBonnet/medinote-7b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [medinote-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q2_K.gguf) | Q2_K | 2.36GB |
18
+ | [medinote-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
19
+ | [medinote-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.IQ3_S.gguf) | IQ3_S | 2.75GB |
20
+ | [medinote-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
21
+ | [medinote-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.IQ3_M.gguf) | IQ3_M | 2.9GB |
22
+ | [medinote-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q3_K.gguf) | Q3_K | 3.07GB |
23
+ | [medinote-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
24
+ | [medinote-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
25
+ | [medinote-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
26
+ | [medinote-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q4_0.gguf) | Q4_0 | 3.56GB |
27
+ | [medinote-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
28
+ | [medinote-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
29
+ | [medinote-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q4_K.gguf) | Q4_K | 3.8GB |
30
+ | [medinote-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
31
+ | [medinote-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q4_1.gguf) | Q4_1 | 3.95GB |
32
+ | [medinote-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q5_0.gguf) | Q5_0 | 4.33GB |
33
+ | [medinote-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
34
+ | [medinote-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q5_K.gguf) | Q5_K | 4.45GB |
35
+ | [medinote-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
36
+ | [medinote-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q5_1.gguf) | Q5_1 | 4.72GB |
37
+ | [medinote-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q6_K.gguf) | Q6_K | 5.15GB |
38
+ | [medinote-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/AGBonnet_-_medinote-7b-gguf/blob/main/medinote-7b.Q8_0.gguf) | Q8_0 | 6.67GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: llama2
46
+ language:
47
+ - en
48
+ datasets:
49
+ - AGBonnet/augmented-clinical-notes
50
+ base_model: epfl-llm/meditron-7b
51
+ ---
52
+ <img width=20% src="medinote.png" title="logo">
53
+
54
+ # Model Card for MediNote-7B-v1.0
55
+ MediNote is a suite of open-source medical Large Language Models (LLMs) fine-tuned for clinical note generation from the [Meditron](https://arxiv.org/abs/2311.16079) foundation model.
56
+ MediNote-7B is a 7 billion parameters model trained to generate clinical notes from doctor-patient conversations.
57
+
58
+ ## Model Details
59
+
60
+ - **Developed by:** [Antoine Bonnet](https://huggingface.co/AGBonnet) and [Paul Boulenger](https://huggingface.co/paulblger)
61
+ - **Model type:** Causal decoder-only transformer language model
62
+ - **Language(s):** English only
63
+ - **Model License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
64
+ - **Code License:** [MIT](https://opensource.org/license/mit/)
65
+ - **Fine-tuned from model:** [Meditron-7B.v1.0](https://huggingface.co/epfl-llm/meditron-7b)
66
+ - **Context length:** 2K tokens
67
+ - **Input:** Patient-doctor conversation transcripts (text)
68
+ - **Output:** Clinical notes (text)
69
+ - **Repository:** [EPFL-IC-Make-Team/ClinicalNotes](https://github.com/EPFL-IC-Make-Team/ClinicalNotes)
70
+ - **Trainer:** [epflLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
71
+ - **Report:** *[MediNote: Automatic Clinical Notes](https://github.com/EPFL-IC-Make-Team/medinote/blob/main/report.pdf)*
72
+
73
+ <p align="center">
74
+ <img width=70% src="model_pipeline.pdf" alt="Model pipeline" title="Model pipeline">
75
+ </p>
76
+
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use
81
+
82
+ It is possible to use this model to generate clinical notes, which is useful for experimentation and understanding its capabilities.
83
+ It should not be used directly for production or work that may impact people.
84
+
85
+ ### Out-of-Scope Use
86
+
87
+ This model is not yet robust enough for use in a real clinical setting.
88
+ We do not recommend using this model for natural language generation in a production environment.
89
+
90
+